

## InfoFair: Information-Theoretical Intersectional Fairness



Jian Kang<sup>1</sup>



Tiankai Xie<sup>2</sup>



Xintao Wu<sup>3</sup>





Hanghang Tong<sup>1</sup>

<sup>1</sup> University of Illinois at Urbana-Champaign

<sup>2</sup> Arizona State University

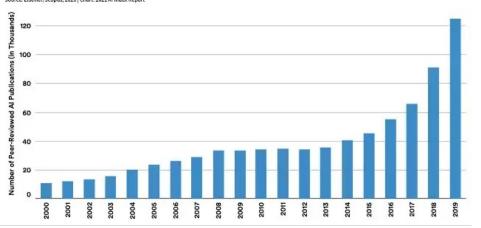
<sup>3</sup> University of Arkansas



## **Rise of Machine Learning**



NUMBER of PEER-REVIEWED AI PUBLICATIONS, 2000-19 Source: Elsevier/Scopus, 2020 | Chart: 2021 Al Index Report



Number of publications in artificial intelligence/machine learning



#### **Object detection**

#### [1] https://cekicbaris.medium.com/history-of-deep-learning-72144ebc9d44

[2] Wu, L., He, X., Wang, X., Zhang, K., & Wang, M.. A Survey on Neural Recommendation: From Collaborative Filtering to Content and Context Enriched Recommendation. arXiv 2021.

[3] Wang, C. Y., Bochkovskiy, A., & Liao, H. Y. M. (2022). YOLOv7: Trainable Bag-of-freebies Sets New State-of-the-art for Real-time Object Detectors. arXiv 2022. [4] Yasunaga, M., Ren, H., Bosselut, A., Liang, P., & Leskovec, J.. QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question Answering. NAACL 2021.

#### **Frequently Bought Together**



This item: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, Second Edition (Springer Series in Statistics) by **Trevor Hastie** 

Pattern Recognition and Machine Learning (Information Science and Statistics) by Christopher M. Bishop

Pattern Classification (2nd Edition) by Richard O. Duda

#### Customers Who Bought This Item Also Bought



E-commerce

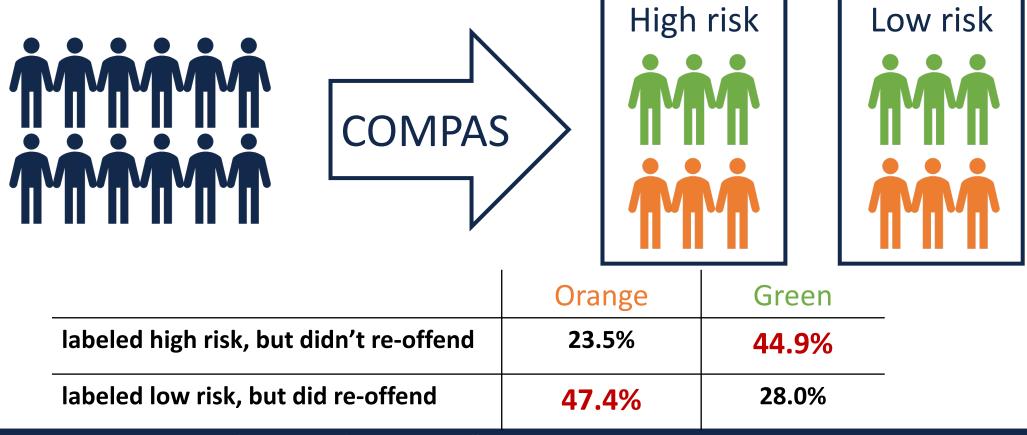
\*\*\*\*\* (13) \$39.59

#### Question answering

# **Machine Learning Could Be Unfair**

#### • Example: COMPAS

- A risk assessment system to evaluate whether an individual would re-offend a crime

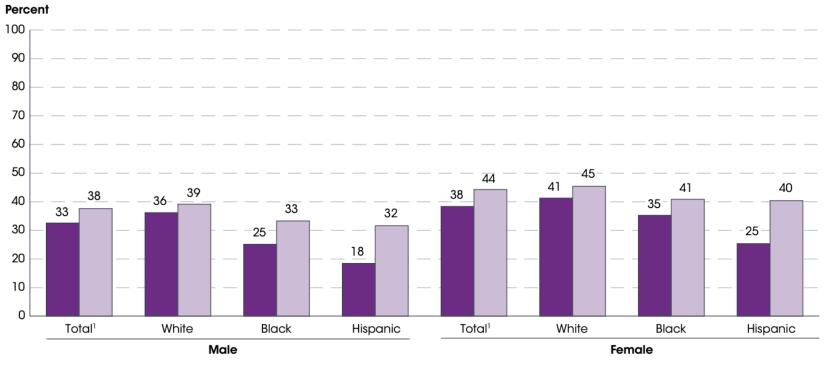


\* In this example, we use the imaginary race groups (green and orange) to avoid potential offenses. [1] https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

## **Unfairness: Multiple Sensitive Attribute**



#### • Example: college admission



Sex and race/ethnicity

2000 2018

• **Observation:** the admission decision is unfair when we consider sex and race/ethnicity simultaneously

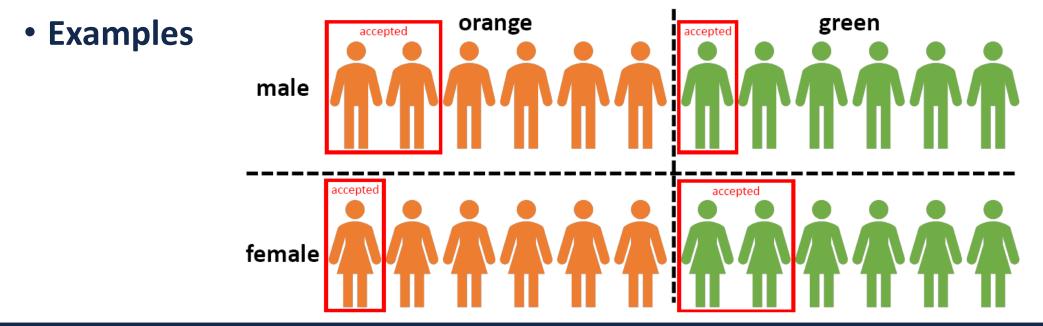
\* In this example, we consider the binary biological sex. However, the gender identity of an individual could be non-binary. [1] Hussar, B., Zhang, J., Hein, S., Wang, K., Roberts, A., Cui, J., ... & Dilig, R.. The Condition of Education 2020. NCES 2020.

## **Existing Works: What to Debias**



#### What to debias

- Key idea: debias multiple distinct sensitive attribute
- Examples: compositional fairness
- Limitation: fail to guarantee fairness on the fine-grained groups formed by multiple sensitive attributes



\* In this example, we consider the binary biological sex. However, the gender identity of an individual could be non-binary. [1] Bose, A., & Hamilton, W.. Compositional Fairness Constraints for Graph Embeddings. ICML 2019.

# **Existing Works: How to Debias**

#### How to debias

- Key idea: optimize a surrogate constraints of group fairness
- Examples: adversarial debiasing, linear correlation optimization
- Limitation: achieve fairness unless the well-trained module that mitigates the bias could perfectly learn the mapping between sensitive attribute and model outcomes
- Question: can we achieve group fairness
  - With respect to multiple sensitive attributes simultaneously
  - Without optimizing a surrogate constraint

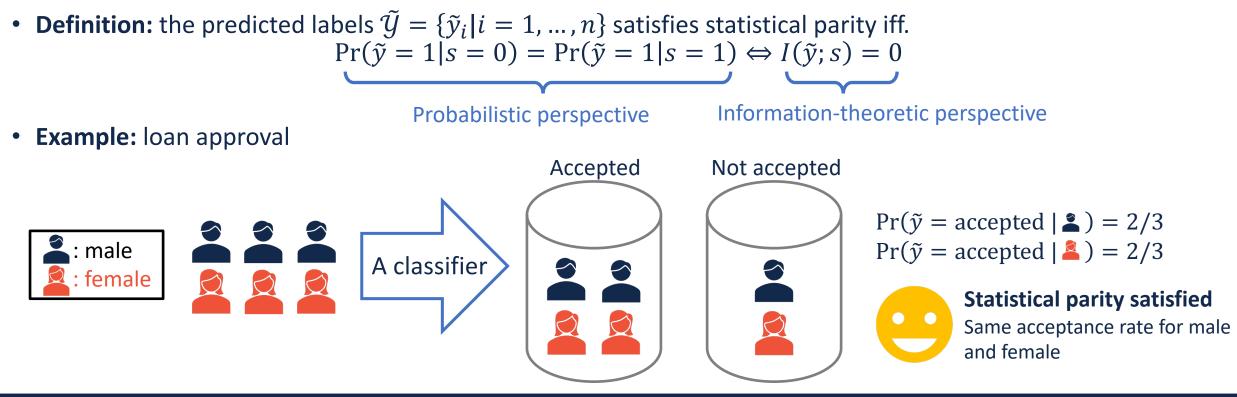
# **Preliminary: Statistical Parity**



#### • Given



- $\mathcal{D} = \{(\mathbf{x}_i, s_i, y_i) | i = 1, ..., n\}$ : a dataset of n data points
  - $\mathbf{x}_i$ ,  $s_i$ ,  $y_i$ : feature vector, sensitive attribute value and a binary label of the *i*-th data point



[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S.. Certifying and Removing Disparate Impact. KDD 2015.



## **Problem Definition**



#### • Input

- $-S = \{s^{(1)}, \dots, s^{(k)}\}: a \text{ set of } k \text{ sensitive attributes}$ 
  - $s^{(j)}$ : *j*-th sensitive attribute
- $-\mathcal{D} = \{(\mathbf{x}_i, \mathbf{s}_i, y_i) | i = 1, ..., n\}: a \text{ set of } n \text{ data points}$ 
  - $\mathbf{s}_i = \left[s_i^{(1)}, \dots, s_i^{(k)}\right]$ : the vectorized sensitive feature of the *i*-th data point that includes all interested sensitive attribute
- $-l(\mathbf{x}; \mathbf{s}; y; \tilde{\mathbf{y}}; \boldsymbol{\theta})$ : a loss function to be minimized by a learning algorithm
  - $\tilde{\mathbf{y}}^* = \operatorname{argmin}_{\tilde{\mathbf{y}}} l(\mathbf{x}; \mathbf{s}; y; \tilde{\mathbf{y}}; \boldsymbol{\theta})$ : the optimal learning outcome w.r.t. the input data
- Output: a set of revised learning outcomes  $\{\tilde{\mathbf{y}}_i^* | i = 1, ..., n\}$  that minimizes
  - Empirical loss  $\mathbb{E}_{(\mathbf{x},\mathbf{s},y)\sim\mathcal{D}}[l(\mathbf{x};\mathbf{s};y;\tilde{\mathbf{y}};\mathbf{\theta})]$
  - Mutual information between the learning outcomes and sensitive attribute  $I(\tilde{\mathbf{y}}; \mathbf{s})$

## Roadmap



- Motivation
- Proposed method: InfoFair
- Experiments
- Conclusion



### Optimization problem

$$\min_{\boldsymbol{\theta}} \quad J = \mathbb{E}_{(\mathbf{x}, \boldsymbol{s}, \boldsymbol{y}) \sim \mathcal{D}}[l(\mathbf{x}; \mathbf{s}; \boldsymbol{y}; \tilde{\mathbf{y}}; \boldsymbol{\theta}) + \alpha I(\tilde{\mathbf{y}}; \mathbf{s})]$$

 $-\alpha$ : regularization hyperparameter, non-negative

Key term to optimize

- Common approach: adversarial learning
  - Key idea: predicting one random variable (e.g., s) using another one (e.g.,  $\widetilde{y}$ )
  - Limitation: requiring perfect modeling of distribution between two variables  $p(\mathbf{s}|\tilde{\mathbf{y}}) = q(\mathbf{s}|\tilde{\mathbf{y}})$ 
    - $p(\mathbf{s}|\tilde{\mathbf{y}}), q(\mathbf{s}|\tilde{\mathbf{y}})$ : probability density functions of  $\mathbf{s}$  given  $\tilde{\mathbf{y}}$
    - $q(\mathbf{s}|\tilde{\mathbf{y}})$  is modeled by an adversary with some learnable parameters
- Question: how to minimize mutual information when  $p(\mathbf{s}|\tilde{\mathbf{y}}) = q(\mathbf{s}|\tilde{\mathbf{y}})$  does not hold?





# **Mutual Information: A Variational Representation**



#### Mutual information

$$I(\tilde{\mathbf{y}};\mathbf{s}) = H(\mathbf{s}) - H(\mathbf{s}|\tilde{\mathbf{y}})$$

 $-H(\mathbf{s}) = -\mathbb{E}_{\mathbf{s}}[\log p(\mathbf{s})]$ : entropy of  $\mathbf{s}$ 

 $-H(\mathbf{s}|\tilde{\mathbf{y}}) = -\mathbb{E}_{\mathbf{s},\tilde{\mathbf{y}}}[\log p(\mathbf{s}|\tilde{\mathbf{y}})]$ : conditional entropy of  $\mathbf{s}$  given  $\tilde{\mathbf{y}}$ 

- A variational representation  $I(\tilde{\mathbf{y}}; \mathbf{s}) = H(\mathbf{s}) + \mathbb{E}_{\mathbf{s}, \tilde{\mathbf{y}}} \left[ \log q(\mathbf{s} | \tilde{\mathbf{y}}) \right] + \mathbb{E}_{\mathbf{s}, \tilde{\mathbf{y}}} \left[ \log \frac{p(\tilde{\mathbf{y}}; \mathbf{s})}{p(\tilde{\mathbf{y}})q(\mathbf{s} | \tilde{\mathbf{y}})} \right]$ Key term #2
  - $q(\mathbf{s}|\tilde{\mathbf{y}})$ : a variational distribution of  $p(\mathbf{s}|\tilde{\mathbf{y}})$
  - $-H(\mathbf{s})$ : a constant (our assumption),  $\mathbf{s}$  relates to demographic information which is commonly unchanged
- **Question:** how to calculate these key terms?

# **InfoFair: Sensitive Feature Reconstruction**

- Goal: practical computation of  $\log q(\mathbf{s}|\tilde{\mathbf{y}})$
- Key idea: reconstruction of sensitive feature s given  $\widetilde{y}$
- Solution: a decoder f

$$\log q(\mathbf{s}|\tilde{\mathbf{y}}) = \log f(\tilde{\mathbf{y}}; \mathbf{s}; \mathbf{W})$$

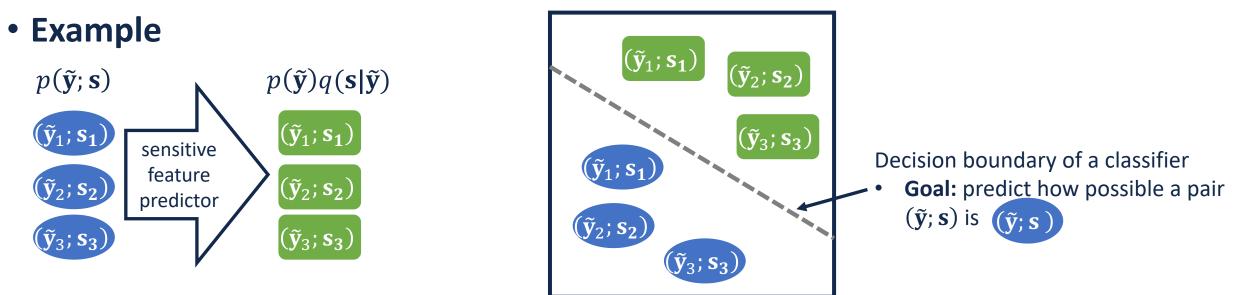
- Input:  $\tilde{y}$  = the learning outcome of a data point, s = the sensitive feature of a data point, W = learnable parameters
- **Output:**  $f(\tilde{\mathbf{y}}; \mathbf{s}; \mathbf{W})$  = output of the decoder

### • Examples of sensitive feature predictor

- Categorical sensitive feature s:  $f(\tilde{\mathbf{y}}; \mathbf{s}; \mathbf{W}) = \text{log-likelihood } \log \Pr(\mathbf{s}|\tilde{\mathbf{y}})$
- Continuous sensitive feature s:  $f(\tilde{y}; s; W)$  = output of some probabilistic generative model (e.g., variational autoencoders)

# **InfoFair: Density Ratio Estimation**

- **Goal:** practical computation of  $\log \frac{p(\tilde{\mathbf{y}}; \mathbf{s})}{p(\tilde{\mathbf{y}})q(\mathbf{s}|\tilde{\mathbf{y}})}$
- Key idea: density ratio estimation
- Solution: class probability estimation (originally developed for covariate shift)
  - Intuition: predict the probability that a pair  $(\tilde{\mathbf{y}}; \mathbf{s})$  is drawn from the true distribution p



[1] Bickel, S., Brückner, M., & Scheffer, T.. Discriminative Learning under Covariate Shift. JMLR 2009.

# **Density Ratio Estimation: Detailed Steps**



#### • Key steps

- Assign positive label (c = 1) for  $\tilde{\mathbf{y}}$  and the ground-truth sensitive features
- Assign negative label (c = -1) for  $\tilde{\mathbf{y}}$  and its reconstructed sensitive features
- Apply a classifier to predict c for a given pair of  $\tilde{\mathbf{y}}$  and ground-truth/reconstructed sensitive feature

$$p(\tilde{\mathbf{y}}; \mathbf{s}) = \Pr(c = 1 | \tilde{\mathbf{y}}, \mathbf{s})$$
  $p(\tilde{\mathbf{y}})q(\mathbf{s} | \tilde{\mathbf{y}}) = \Pr(c = -1 | \tilde{\mathbf{y}}, \mathbf{s})$ 

- Calculate the density ratio

$$\log \frac{p(\tilde{\mathbf{y}}; \mathbf{s})}{p(\tilde{\mathbf{y}})q(\mathbf{s}|\tilde{\mathbf{y}})} = \log \frac{\Pr(c = 1|\tilde{\mathbf{y}}, \mathbf{s})}{1 - \Pr(c = 1|\tilde{\mathbf{y}}, \mathbf{s})} = \operatorname{logit}(\Pr(c = 1|\tilde{\mathbf{y}}, \mathbf{s}))$$

• Classifier = logistic regression classifier

$$\log \frac{p(\tilde{\mathbf{y}}; \mathbf{s})}{p(\tilde{\mathbf{y}})q(\mathbf{s}|\tilde{\mathbf{y}})} = \operatorname{logit}(\Pr(c = 1|\tilde{\mathbf{y}}, \mathbf{s})) = \mathbf{w}_1^T \tilde{\mathbf{y}} + \mathbf{w}_2^T \mathbf{s}$$

- $w_1:$  learnable parameters corresponding to  $\widetilde{y}$
- $\boldsymbol{w}_2 {:}$  learnable parameters corresponding to  $\boldsymbol{s}$

# **InfoFair: Optimization Problem**

- Practical computation of the variational representation
  - Sensitive attribute reconstruction with decoder
  - Density ratio estimation as class probability estimation
- Optimization problem

 $\min_{\boldsymbol{\theta}, \mathbf{w}_1, \mathbf{w}_2}$ 

$$= \mathbb{E}_{(\mathbf{x}, \mathbf{s}, y) \sim \mathcal{D}} [l(\mathbf{x}; \mathbf{s}; y; \tilde{\mathbf{y}}; \boldsymbol{\theta}) + \alpha \log q(\mathbf{s} | \tilde{\mathbf{y}})] + \mathbb{E}_{\{(\tilde{\mathbf{y}}, \mathbf{s}) \sim p(\tilde{\mathbf{y}}, \mathbf{s})\} \cup \{(\tilde{\mathbf{y}}, \mathbf{s}) \sim p(\tilde{\mathbf{y}})q(\mathbf{s} | \tilde{\mathbf{y}})\}} [\mathbf{w}_1^T \tilde{\mathbf{y}} + \mathbf{w}_2^T \mathbf{s}]$$

Density ratio estimation

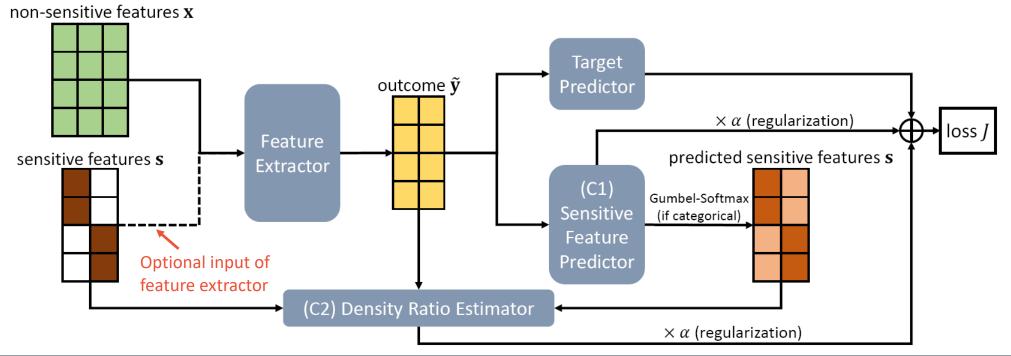


Sensitive attribute reconstruction

## **InfoFair: Overall Framework**

#### • Key components

- Feature extractor + target predictor: predict target for downstream tasks
- Sensitive feature predictor: reconstruct sensitive feature
- Density ratio estimator: calculate the density ratio



# **InfoFair: Generalizations and Variants**



### InfoFair with equal opportunity

 Solution: calculate the variational representation of mutual information for samples with specific label only

#### Relationship to adversarial debiasing

Solution: (1) merge feature extractor and target predictor to one module and (2) remove the density ratio estimator

### Relationship to information bottleneck

 Solution: set the loss function to be the negative mutual information between ground truth and learning outcomes

#### • Fairness for continuous-valued sensitive attributes

- Solution: utilize a probabilistic generative model to reconstruct sensitive feature

### • Fairness for non-i.i.d. graph data

- Solution: change the feature extractor to a graph neural network

Hardt, M., Price, E., & Srebro, N.. Equality of opportunity in supervised learning. NeurIPS 2016.
Zhang, B. H., Lemoine, B., & Mitchell, M.. Mitigating Unwanted Biases with Adversarial Learning. AIES 2018.
Tishby, N., Pereira, F. C., & Bialek, W.. The Information Bottleneck Method. arXiv 2000.
Kipf, T. N., & Welling, M.. Semi-supervised Classification with Graph Convolutional Networks. ICLR 2017.

## Roadmap



- Motivation
- Proposed method: InfoFair
- Experiments
- Conclusion



# **Experiments: Settings**

- Task: binary classification
- Sensitive attribute: binary attribute, non-binary attribute, multiple attributes
- Benchmark datasets

| Datasets     | # Samples | # Attributes | # Classes |
|--------------|-----------|--------------|-----------|
| COMPAS       | 6,172     | 52           | 2         |
| Adult Income | 45,222    | 14           | 2         |
| Dutch Census | 60,420    | 11           | 2         |

#### Baseline methods

- Vanilla model: Vanilla
- Fairness-aware models: LFR, MinDiff, DI, Adversarial, FCFC, GerryFair, GDP
- Metrics
  - Utility: micro F1 and macro F1 (Micro/Macro F1)
  - Fairness: statistical imparity (Imparity) and relative reduction (Reduction)

## **Experiments: Effectiveness Results**



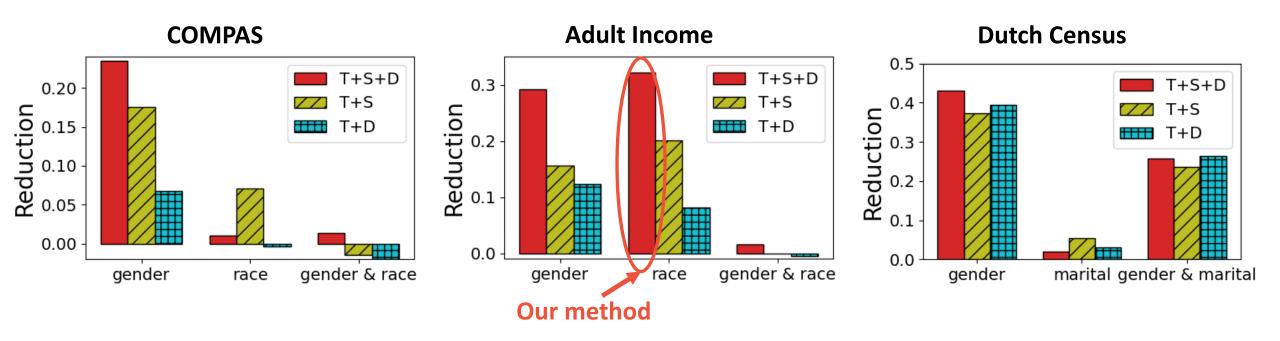
- **Observation:** InfoFair (red box) consistently mitigates the most bias while maintaining accuracy
  - Mitigating more bias = lower imparity, higher reduction
  - LFR, Adversarial and FCFC achieves 100% bias reduction by predicting all data points to one class
  - Similar observation on COMPAS and Dutch Census dataset

| Debiasing results on Adult Income dataset |                |          |           |                |          |           |                |          |           |  |  |
|-------------------------------------------|----------------|----------|-----------|----------------|----------|-----------|----------------|----------|-----------|--|--|
|                                           | gender         |          |           | race           |          |           | gender & race  |          |           |  |  |
| Method                                    | Micro/Macro F1 | Imparity | Reduction | Micro/Macro F1 | Imparity | Reduction | Micro/Macro F1 | Imparity | Reduction |  |  |
| Vanilla                                   | 0.830/0.762    | 0.066    | 0.000%    | 0.830/0.762    | 0.062    | 0.000%    | 0.830/0.762    | 0.083    | 0.000%    |  |  |
| LFR                                       | 0.743/0.426    | 0.000    | 100.0%    | N/A            | N/A      | N/A       | N/A            | N/A      | N/A       |  |  |
| MinDiff                                   | 0.828/0.746    | 0.058    | 12.06%    | N/A            | N/A      | N/A       | N/A            | N/A      | N/A       |  |  |
| DI                                        | 0.823/0.730    | 0.053    | 19.85%    | 0.825/0.743    | 0.056    | 10.62%    | 0.823/0.736    | 0.081    | 2.276%    |  |  |
| Adversarial                               | 0.743/0.426    | 0.000    | 100.0%    | 0.743/0.426    | 0.000    | 100.0%    | 0.743/0.426    | 0.000    | 100.0%    |  |  |
| FCFC                                      | 0.257/0.204    | 0.000    | 100.0%    | 0.257/0.204    | 0.000    | 100.0%    | 0.257/0.204    | 0.000    | 100.0%    |  |  |
| GerryFair                                 | 0.833/0.752    | 0.056    | 15.70%    | 0.833/0.752    | 0.067    | -7.664%   | 0.797/0.710    | 0.215    | -158.3%   |  |  |
| GDP                                       | 0.825/0.744    | 0.055    | 16.73%    | 0.827/0.749    | 0.059    | 6.351%    | 0.824/0.740    | 0.075    | 9.246%    |  |  |
| INFOFAIR                                  | 0.816/0.721    | 0.047    | 29.24%    | 0.810/0.686    | 0.042    | 32.11%    | 0.818/0.714    | 0.082    | 1.532%    |  |  |

# **Experiments: Ablation Study**



• **Observation:** InfoFair (red bar) mitigates the most bias compared to its ablated variants





## Roadmap



- Motivation
- Proposed method: InfoFair
- Experiments 🗹
- Conclusion



## Takeaways

- Problem: information-theoretic intersectional fairness
  - Intersectional fairness: joint variable of all interested sensitive attribute
  - Information-theoretic perspective: mutual information minimization
- Solution: InfoFair
  - Variational representation of mutual information
  - Sensitive attribute reconstruction with autoencoder
  - Density ratio estimation as class probability estimation
- Results: effectiveness in bias mitigation while maintaining accuracy

sensitive

feature

predictor

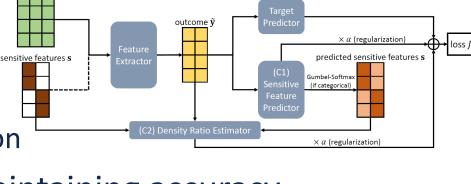
 $p(\tilde{\mathbf{y}})q(\mathbf{s}|\tilde{\mathbf{y}})$ 

 $( ilde{\mathbf{y}}_1; \mathbf{s_1})$ 

 $(\tilde{\mathbf{y}}_2; \mathbf{s_2})$ 

**ỹ**<sub>3</sub>; **S**<sub>3</sub>

- More details in the paper  $_{p(\tilde{\mathbf{y}};s)}$ 
  - Mathematical analysis
  - Detailed experiments



23

