NSF

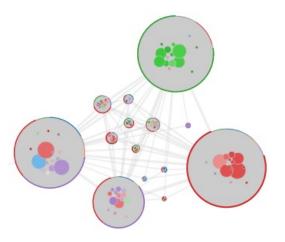
April 27–29, 2023 | Graduate Minneapolis Hotel | Minneapolis, Minnesota, U.S.

Algorithmic Fairness on Graphs: State-of-the-Art and Open Challenges

Jian Kang jiank2@illinois.edu

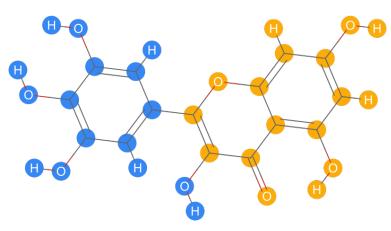
Hanghang Tong htong@illinois.edu

The Ubiquity of Graphs

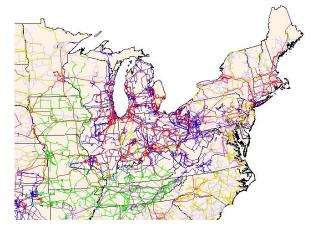


Collaboration network

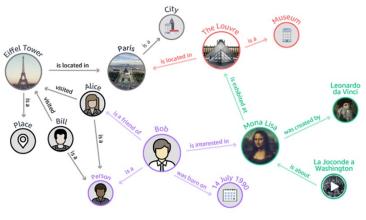
Road network



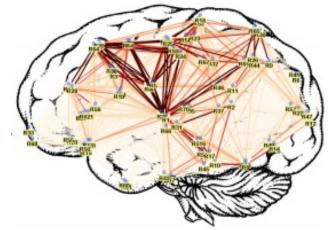
Molecular graph



Power grid



Knowledge graph



Brain network

Graph Mining: Applications

Computational bioinformatics



Financial fraud detection

Smart city

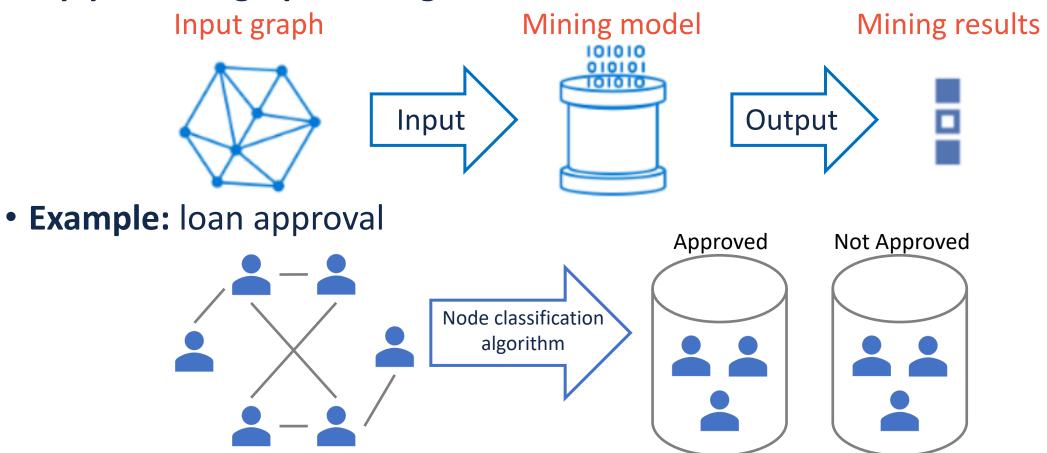
[1] Xu, X., Zhou, C., & Wang, Z. (2009). Credit Scoring Algorithm based on Link Analysis Ranking with Support Vector Machine. ESWA 2009.

[2] Zhang, S., Zhou, D., Yildirim, M. Y., Alcorn, S., He, J., Davulcu, H., & Tong, H. (2017). Hidden: Hierarchical Dense Subgraph Detection with Application to Financial Fraud Detection. SDM 2017.

[4] Wang, X., Ma, Y., Wang, Y., Jin, W., Wang, X., ... & Yu, J. (2020). Traffic Flow Prediction via Spatial Temporal Graph Neural Network. WWW 2020.

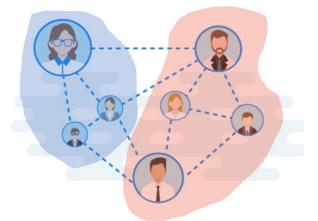
Graph Mining: How To

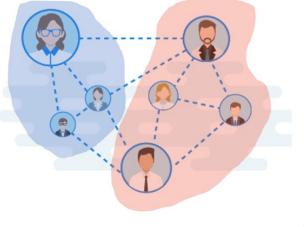
A pipeline of graph mining

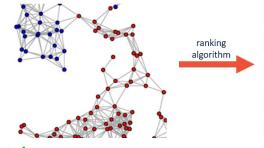


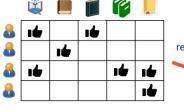
Graph Mining: Who & What

- Who are in the same online community?
- Who is the key to bridge two academic areas?
- Who is the master criminal mind?
- Who started a misinformation campaign?
- Which gene is most relevant to a given disease?
- Which tweet is likely to go viral?
- Which transaction looks suspicious?
- Which items shall we recommend to a user?



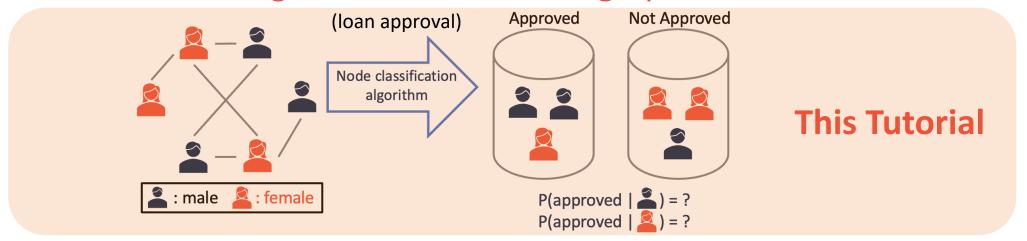






Graph Mining: Why and How

How to ensure algorithmic fairness on graphs?



- How do fake reviews skew the recommendation results?
- **How** do the mining results relate to the input graph topology?
- Why are two seemingly different users in the same community?
- Why is a particular tweet more likely to go viral than another?
- Why does the algorithm 'think' a transaction looks suspicious?

Algorithmic Fairness in Machine Learning

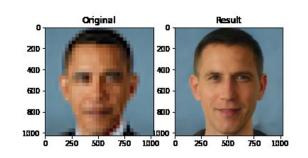
- Motivation
 - No data and/or model are perfect
 - Model trained on data could systematically harm a group of people
- Goals: (1) understand and (2) correct the bias(es)
- Examples: bias in machine learning systems

EPORT \ TECH \ ARTIFICIAL INTELLIGENCE \

What a machine learning tool that turns Obama white can (and can't) tell us about AI bias

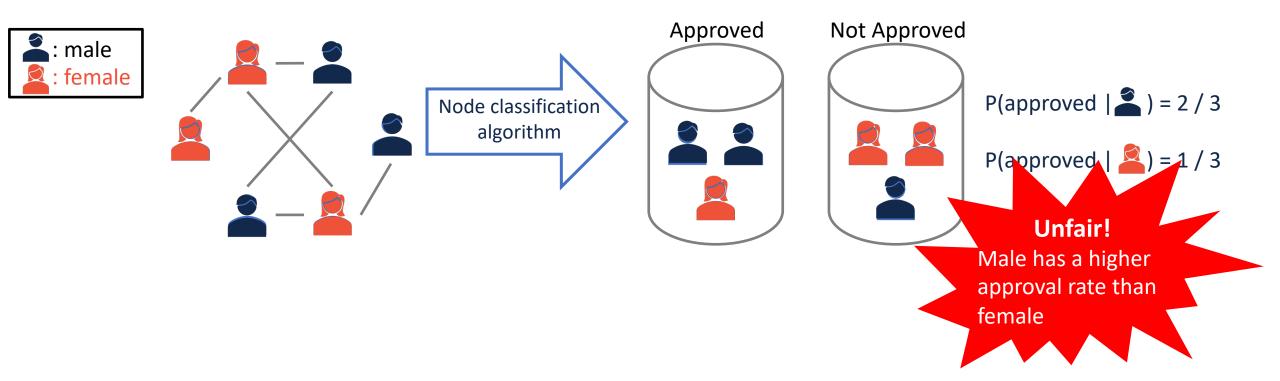
A striking image that only hints at a much bigger problem

By James Vincent | Jun 23, 2020, 3:45pm EDT



Algorithmic Fairness on Graphs: Loan Approval

• Example: loan approval



* We consider the binary biological sex for all examples, and we acknowledge the existence of non-binary gender identity.

Algorithmic Fairness on Graphs: Suicide Prevention

Individual

Gatekeeper

friendship

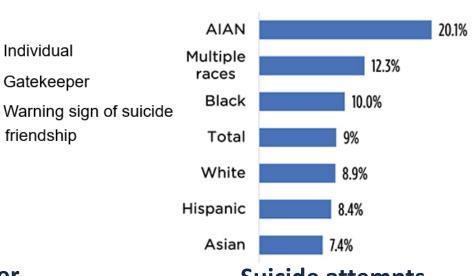
Suicide is one of the leading causes of death in US

suicidepreventionlifeline.org

Gatekeeper training programs

Toy example of a gatekeeper training program

Percentage of high schoolers reporting a suicide attempt in the past 12 months, by race/ethnicity



Suicide attempts by race/ethnicity

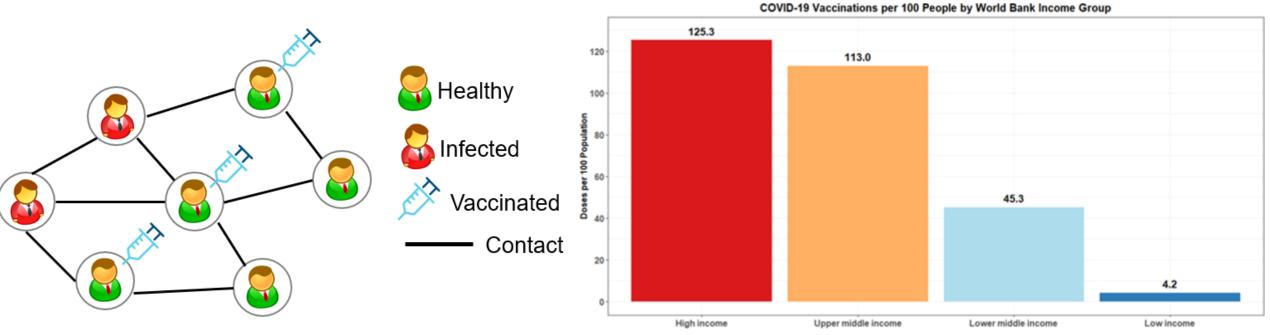
• Observation: existing suicide prevention efforts disproportionately affect individuals of different demographics

^[1] https://www.cdc.gov/nchs/data/vsrr/vsrr024.pdf

^[2] https://988lifeline.org/

^[3] https://www.childtrends.org/publications/addressing-discrimination-supports-youth-suicide-prevention-efforts

Algorithmic Fairness on Graphs: COVID-19 Vaccine Allocation



Toy example of virus dissemination

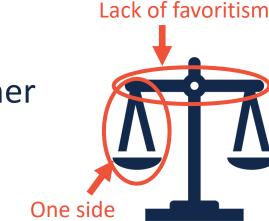
Statistics of COVID-19 vaccine allocation (as of Oct. 1, 2021)

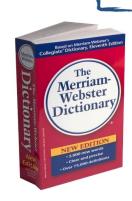
- Observation: vaccines are unequally distributed
- Key question: how to ensure algorithmic fairness on graphs?

Algorithmic Fairness: Definition

- Principle: lack of favoritism from one side or another
- Definitions of algorithmic fairness
 - Group fairness
 - Statistical parity
 - Equal opportunity
 - Equalized odds
 - ...
 - Individual fairness
 - Counterfactual fairness
 - Difference principle

— ...





_			• • •
Lairn	ACC C	latin	ition
ı anı	1 C 33 U	ICIIII	

Group fairness

Individual fairness

Counterfactual fairness

Difference principle

Two sides

Two demographic groups

Two data points

A data point and its counterfactual version

Two groups of points with different utility

^[1] Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C., & Venkatasubramanian, S. (2015). Certifying and Removing Disparate Impact. KDD 2015.

^[2] Hardt, M., Price, E., & Srebro, N. (2016). Equality of Opportunity in Supervised Learning. NeurIPS 2016.

^[3] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through Awareness. ITCS 2012.

^[4] Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. NeurIPS 2017.

^[5] Rawls, J. (1971). A Theory of Justice. Press, Cambridge 1971.

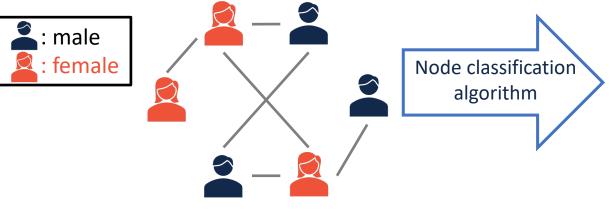
Group Fairness: Statistical Parity

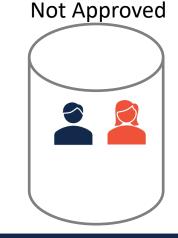
• **Definition:** equal acceptance rate

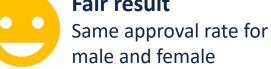
$$Pr_{+}(\hat{y} = c) = Pr_{-}(\hat{y} = c)$$

- $-\hat{y}$: model prediction
- Pr₊: probability for the protected group
- Pr_: probability for the unprotected group
- Also known as demographic parity, disparate impact

• Example: loan approval







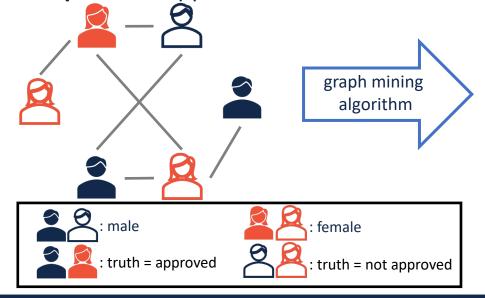
Group Fairness: Equal Opportunity

• **Definition:** equal true positive rate

$$\Pr_{+}(\hat{y} = c | y = c) = \Pr_{-}(\hat{y} = c | y = c)$$

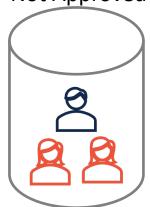
- y: true label
- $-\hat{y}$: model prediction
- Pr₊: probability for the protected group
- Pr_: probability for the unprotected group

• Example: loan approval



Approved

Not Approved



 $Pr_{\bullet}(\hat{y} = approved | \hat{A}) = 1$

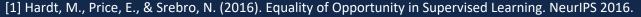
If hold for all classes, it

is called equalized odds

$$\Pr[\hat{y} = approved | \underline{2}) = 1$$

Fair result

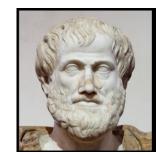
Same true positive rate for male and female



Individual Fairness

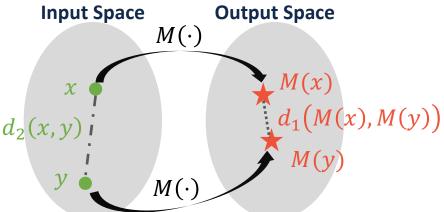
- **Definition:** similar individuals should have similar outcomes
 - Rooted in Aristotle's conception of justice as consistency
- Formulation: Lipschitz inequality (most common)

$$d_1(M(x), M(y)) \le Ld_2(x, y)$$



"Equality consists in the same treatment of similar persons, and no government can stand which is not founded upon justice."

- -M: a mapping from input to output
- $-d_1$: distance metric for output
- $-d_2$: distance metric for input
- -L: a constant scalar
- Example



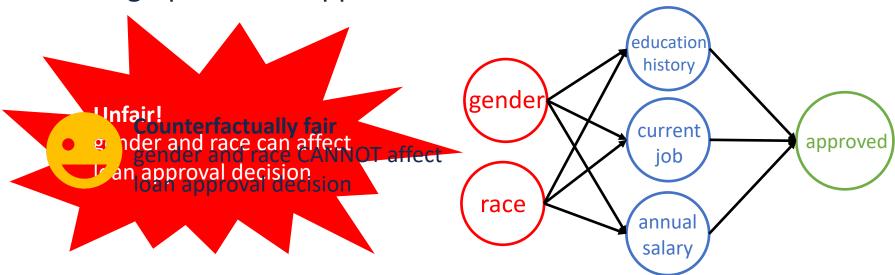
Counterfactual Fairness

counterfactual version

• **Definition:** same outcomes for 'different versions' of the same candidate

$$\Pr(\hat{y}_{s=s_1} = c | s = s_1, x = \mathbf{x}) = \Pr(\hat{y}_{s=s_2} = c | s = s_2, x = \mathbf{x})$$

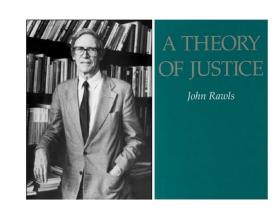
- $\Pr(\hat{y}_{s=s_1} = c | s = s_1, x = \mathbf{x})$: version 1 of \mathbf{x} with sensitive demographic s_1
- $\Pr(\hat{y}_{s=s_2} = c | s = s_2, x = \mathbf{x})$: version 2 of \mathbf{x} with sensitive demographic s_2
- Example: causal graph of loan approval



Rawlsian Difference Principle

- Origin: distributive justice
- Goal: fairness as just allocation of social welfare

"Inequalities are permissible when they maximize [...] the long-term expectations of the least fortunate group."



-- John Rawls, 1971

- Formulation: max-min problem
 - Min: the least fortunate group with smallest welfare/utility
 - Max: maximization of the corresponding utility
- Also known as max-min fairness

[1] Rawls, J. (1971). A Theory of Justice. Press, Cambridge 1971.

- Justice as fairness
 - Justice is a virtue of instituitions
 - Free persons enjoy and acknowledge the rules
- Well-ordered society
 - Designed to advance the good of its members
 - Regulated by a public conception of justice

Challenge #1: Theoretical Challenge

Assumption

	Classic machine learning	Graph mining
Data	IID samples	Non-IID graph

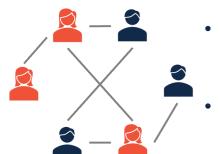
- IID: independent and identically distributed

Example

 Individuals are independent

Cannot affect others

Classic machine learning



Individuals are connected

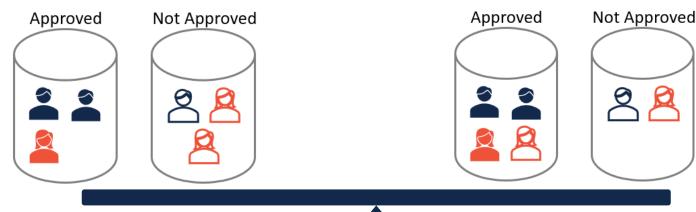
Can affect others through connection(s)

Graph mining

- Challenges: implication of non-IID nature on
 - Measuring bias
 - Dyadic fairness, degree-related fairness
 - Mitigating unfairness
 - Enforce fairness by graph structure imputation

Challenge #2: Algorithmic Challenge

- **Dilemma:** utility vs. fairness
- Example: loan approval
 - Utility = classification accuracy
 - Fairness = statistical parity



Accurate but not fair

Fair but not accurate

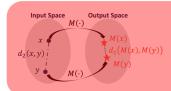
Questions

- Can we improve fairness at no cost of utility?
- If not, how to balance the trade-off between utility and fairness?

Roadmap

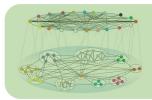
Introduction

Part I: Group Fairness on Graphs



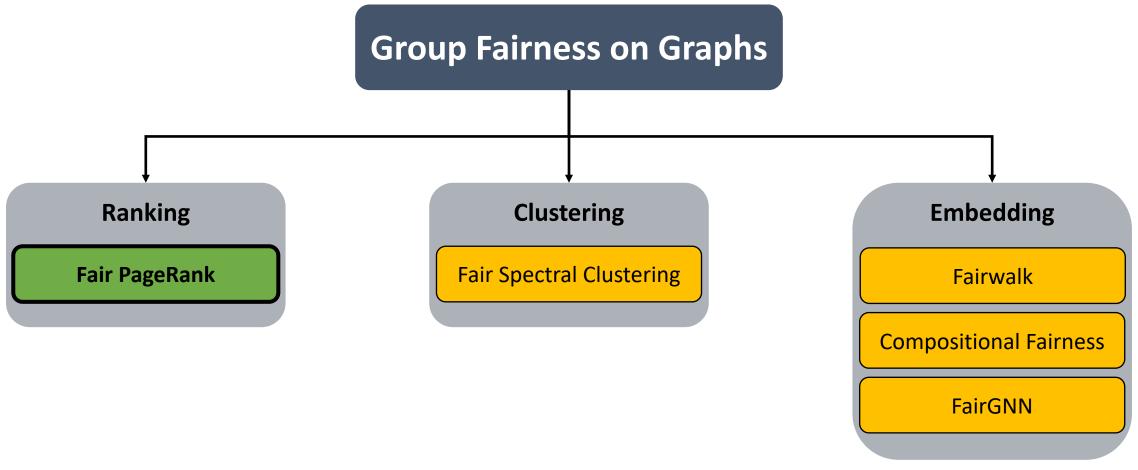
Part II: Individual Fairness on Graphs

Part III: Other Fairness on Graphs



Part V: Future Trends

Overview of Part I



Preliminary: PageRank

- Assumption: important webpage → linked by many others
- Formulation
 - Iterative method for the following linear system

$$\mathbf{r} = c\mathbf{A}^T\mathbf{r} + (1 - c)\mathbf{e}$$

- A: transition matrix
- r: PageRank vector
- *c*: damping factor
- e: teleportation vector
- Closed-form solution

$$\mathbf{r} = (1 - c)(\mathbf{I} - c\mathbf{A}^T)^{-1}\mathbf{e}$$

Variants

- Personalized PageRank (PPR)
- Random Walk with Restart (RWR)

— ...

^[2] Haveliwala, T. H. (2003). Topic-sensitive PageRank: A Context-Sensitive Ranking Algorithm for Web Search. TKDE 2003.

^[3] Tong, H., Faloutsos, C., & Pan, J. Y. (2006). Fast Random Walk with Restart and Its Applications. ICDM 2006.

Unfairness in PageRank

- PageRank score: a measure of node importance in the network
- Facts: some nodes hold more important/central positions in the network
 - biased academic ranking w.r.t. gender → underestimation of scientific contribution by female

Example

- Network:
- Groups: re
- Red node
 - ~48% o
 - ~33% or

- 1. How to define group fairness for PageRank?
- 2. Can we enforce group fairness on PageRank?

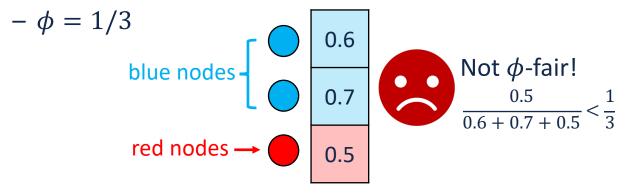
Unfair ranking

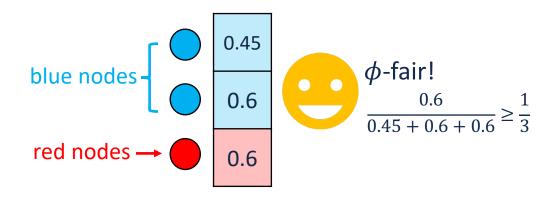
Similar number of red nodes vs. blue nodes (48% red vs. 52% blue) Much less PageRank mass of red nodes (33% red vs. 67% blue)

^[2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.

Fairness Measure: ϕ -Fairness

- Given: (1) a graph G; (2) a parameter ϕ
- **Definition:** a PageRank vector is ϕ -fair if at least ϕ fraction of total PageRank mass is allocated to the protected group
- Variants and generalizations
 - Statistical parity $\rightarrow \phi$ = fraction of protected group
 - Affirmative action $\rightarrow \phi$ = a desired ratio (e.g., 20%)
- Example
 - Protected group = red nodes





^[2] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.

Problem Definition: Fair PageRank

Given

- A graph with transition matrix A
- Partitions of nodes
 - Red nodes (\mathcal{R}): protected group
 - Blue nodes (B): unprotected group
- Find: a fair PageRank vector $\tilde{\mathbf{r}}$ that is
 - $-\phi$ -fair
 - Close to the original PageRank vector r

Fair PageRank: Solutions

• Recap: closed-form solution for PageRank

$$\mathbf{r} = (1 - \mathbf{c})(\mathbf{I} - \mathbf{c}\mathbf{A}^T)^{-1}\mathbf{e}$$

- Parameters in PageRank
 - Damping factor c avoids sinks in the random walk (i.e., nodes without outgoing links)
 - Teleportation vector e controls the starting node where a random walker restarts
 - Can we control where the walker teleports to? —— Solution #1: fairness-sensitive PageRank
 - -Transition matrix A controls the next step where the walker goes to
 - Can we modify the transition probabilities?
 - Can we modify the graph structure?

Solution #1: Fairness-sensitive PageRank

Intuition

- Find a teleportation vector ${f e}$ to make PageRank vector ${f \phi}$ -fair
- Keep transition matrix **A** and $\mathbf{Q}^T = (1 c)(\mathbf{I} c\mathbf{A}^T)^{-1}$ fixed
- Observation: mass of PageRank \mathbf{r} w.r.t. red nodes \mathcal{R} $\mathbf{r}(\mathcal{R}) = \mathbf{Q}^T[\mathcal{R},:]\mathbf{e}$
 - $-\mathbf{Q}^T[\mathcal{R},:]$: rows of \mathbf{Q}^T w.r.t. nodes in set \mathcal{R}
- (Convex) optimization problem

min e s. t.

The fair PageRank
$$\mathbf{Q}^T\mathbf{e}$$
 is as close as possible to the original PageRank \mathbf{r}
$$\mathbf{e}[i] \in [0,1], \forall i \text{ The teleportation vector } \mathbf{e} \text{ is a probability distribution}$$

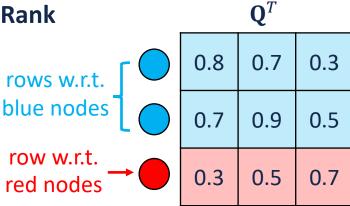
$$\|\mathbf{Q}^T[\mathcal{R},:]\mathbf{e}\|_1 = \phi \text{ The fair PageRank } \mathbf{Q}^T\mathbf{e} \text{ needs to be } \phi\text{-fair}$$

Can be solved by any convex optimization solvers

Fairness-sensitive PageRank: Example

• Settings: $\phi = 1/3$ and protected node = red node

 Original 	PageRank
------------------------------	----------



e

Not
$$\phi$$
-fair! $\frac{0.5}{0.6 + 0.7 + 0.5} < \frac{1}{3}$

• Fairness-sensitive PageRank

rows w.r.t.		0.8	0.7	0.3
blue nodes		0.7	0.9	0.5
row w.r.t red nodes	-	0.3	0.5	0.7

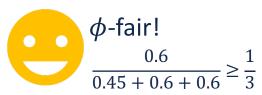
ê

$$\tilde{\mathbf{r}} = \mathbf{Q}^T \tilde{\mathbf{e}} = \boxed{0.6}$$

0.6

0.5

0.45

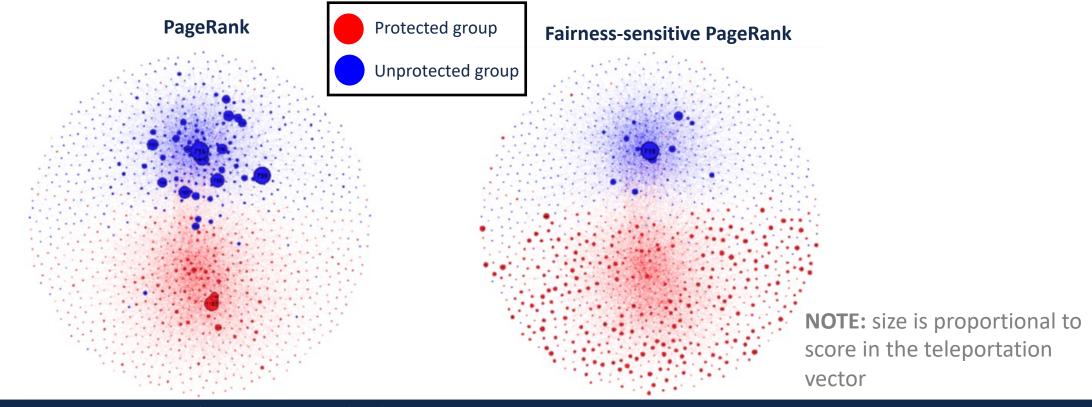


 \mathbf{Q}^T

Fairness-sensitive PageRank: Experiment

• **Observation:** the teleportation vector allocates more weight to the red nodes, especially nodes at the periphery of the network

- More likely to (1) restart at red nodes and (2) walk to other red nodes more often



Fair PageRank: Solutions

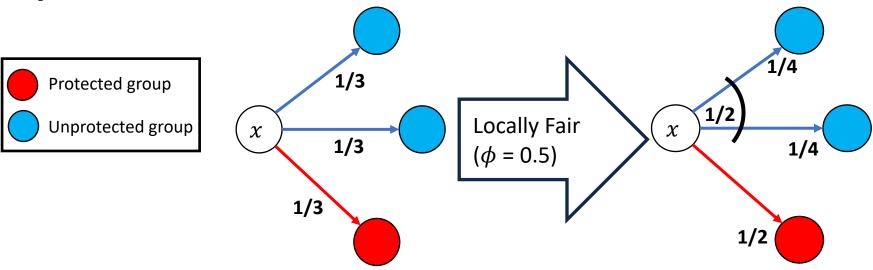
• Recap: closed-form solution for PageRank

$$\mathbf{r} = (1 - \mathbf{c})(\mathbf{I} - \mathbf{c}\mathbf{A}^T)^{-1}\mathbf{e}$$

- Parameters in PageRank
 - Damping factor c avoids sinks in the random walk (i.e., nodes without outgoing links)
 - Teleportation vector e controls the starting node where a random walker restarts
 - Can we control where the walker teleports to?
 - -Transition matrix A controls the next step where the walker goes to
 - Can we modify the transition probabilities? —— Solution #2: locally fair PageRank
 - Can we modify the graph structure?

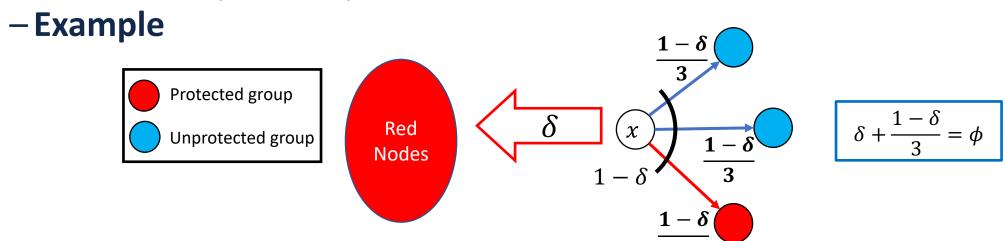
Solution #2: Locally Fair PageRank

- Intuition: adjust the transition matrix A to obtain a fair random walk
- Neighborhood locally fair PageRank
 - -**Key idea:** jump with probability ϕ to red nodes and $(1-\phi)$ to blue nodes
 - Example



Solution #2: Locally Fair PageRank

- Residual locally fair PageRank
 - -Key idea: jump with
 - Equal probability to 1-hop neighbors
 - A residual probability δ to the other red nodes



• Residual allocation policies: neighborhood allocation, uniform allocation, proportional allocation, optimized allocation

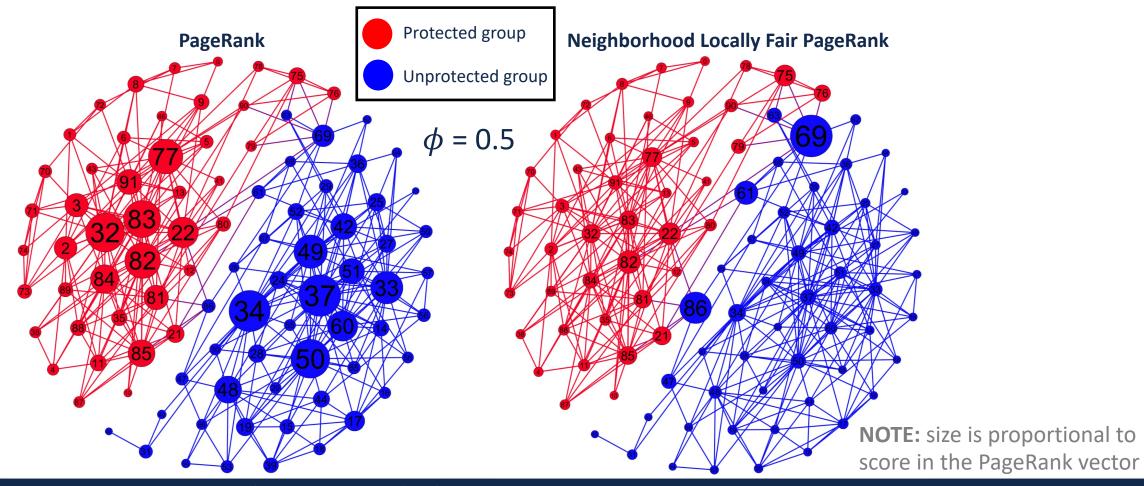
[•] Neighborhood allocation: allocate the residual to protected neighbors, equivalent to neighborhood locally fair PageRank

[•] Uniform allocation: uniformly allocate the residual to all protected nodes

[•] **Proportional allocation:** allocated the residual to all protected nodes proportionally to their PageRank score

Locally Fair PageRank: Experiment

• Observation: PageRank weight is shifted to the blue nodes at boundary



Fair PageRank: Solutions

• Recap: closed-form solution for PageRank

$$\mathbf{r} = (1 - \mathbf{c})(\mathbf{I} - \mathbf{c}\mathbf{A}^T)^{-1}\mathbf{e}$$

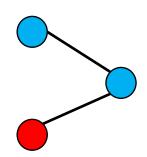
- Parameters in PageRank
 - Damping factor c avoids sinks in the random walk (i.e., nodes without outgoing links)
 - Teleportation vector e controls the starting node where a random walker restarts
 - Can we control where the walker teleports to?
 - -Transition matrix A controls the next step where the walker goes to
 - Can we modify the transition probabilities?
 - Can we modify the graph structure? ← Solution #3: best fair edge identification

Solution #3: Best Fair Edge Identification

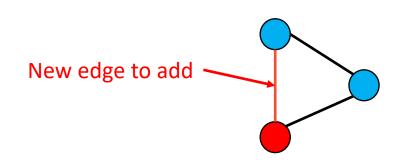
• Intuition: add edges that can improve the PageRank fairness to the graph

Example

$$-\phi = 1/3$$



$$\mathbf{r} = \mathbf{Q}^T \mathbf{e} = \begin{bmatrix} 0.257 \\ 0.486 \end{bmatrix}$$



$$\tilde{\mathbf{r}} = \tilde{\mathbf{Q}}^T \mathbf{e} = \begin{bmatrix} 0.333 \\ 0.333 \end{bmatrix}$$

0.333

$$\phi - fair! = \frac{0.333}{0.333 + 0.333 + 0.333} = \frac{1}{3}$$

Question: how to find the edges with the highest improvement?

Best Fair Edge Identification: Problem Definition

Given

$$-G = (\mathcal{V}, \mathcal{E})$$

- \mathcal{E} : edge set
- \mathcal{V} : node set
- $-S \subseteq V$: protected node set
- $-p_{\mathcal{E}}(\mathcal{S}) = \sum_{i \in \mathcal{V}} p_{\mathcal{E}}(i)$: total PageRank mass of nodes in \mathcal{S} on graph with edge set \mathcal{E}
- Fairness gain of edge addition

$$gain(x,y) = p_{\mathcal{E} \cup (x,y)}(\mathcal{S}) - p_{\mathcal{E}}(\mathcal{S})$$

• Goal: find the edge $(x, y), \forall x, y \in \mathcal{V}$, such that $\underset{(x,y)}{\operatorname{argmax}} \quad \operatorname{gain}(x,y)$

Naive method

Exhaustively recompute
PageRank with the
addition of each node pair

Question: how to efficiently compute the gain?

Best Fair Edge Identification: Fairness Gain

Main result: for a node x, the gain of adding a link to another node y

$$gain(x, y) = \Lambda(x, y)p_{\mathcal{E}}(x)$$

where $\Lambda(x, y)$ has the form

The 'sensitivity' of

The average 'sensitivity' of source node x's neighbors

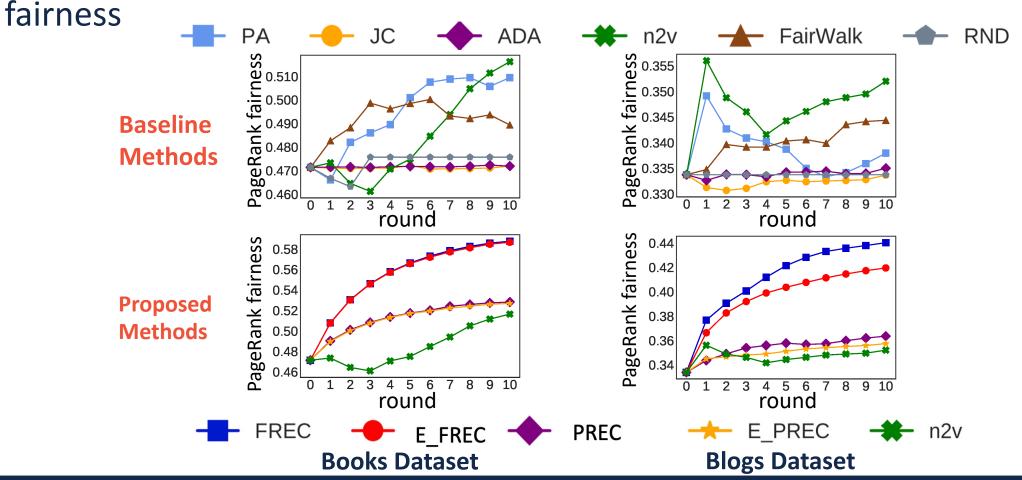
$$\Lambda(x,y) = \frac{\frac{c}{1-c} \left(p_{\mathcal{E}}(\mathcal{S}|y) - \frac{1}{d_x} \sum_{u \in \mathcal{N}_x} p_{\mathcal{E}}(\mathcal{S}|u) \right)}{d_x + \frac{c}{1-c} \left(\frac{1}{d_x} \sum_{u \in \mathcal{N}_x} p_{\mathcal{E}}(x|u) - p_{\mathcal{E}}(x|y) \right) + 1}$$
Source node
$$A = \frac{c}{1-c} \left(\frac{1}{d_x} \sum_{u \in \mathcal{N}_x} p_{\mathcal{E}}(x|u) - p_{\mathcal{E}}(x|y) \right) + 1$$
Average proximity of node x 's note.

Average proximity of node x's neighbors to x

- $-p_{\varepsilon}(x|y)$: personalized PageRank (PPR) score of node x, with query node y, based on edge set ε
- $-p_{\mathcal{E}}(\mathcal{S}|y) = \sum_{i \in \mathcal{S}} p_{\mathcal{E}}(i|y)$: total PPR mass of nodes in \mathcal{S} , with query node y, based on edge set \mathcal{E}
- $p_{\mathcal{E}}(x)$: node x should have high PageRank score
- d_x : node x should have small degree
- $p_{\mathcal{E}}(x|y) \frac{1}{d_x} \sum_{u \in \mathcal{N}_x} p_{\mathcal{E}}(x|u)$: node y is close to node x
- $p_{\mathcal{E}}(\mathcal{S}|y) \frac{1}{du} \sum_{u \in \mathcal{N}_x} p_{\mathcal{E}}(\mathcal{S}|u)$: node y is more sensitive than the source node x's neighborhood

Best Fair Edge Identification: Experiment

• Observation: the proposed method find the best edges to improve PageRank

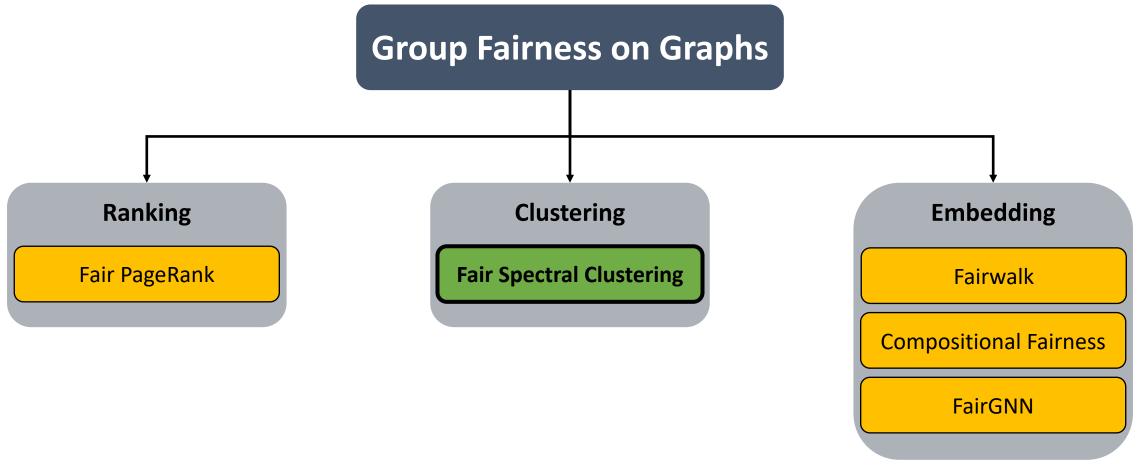


[1] Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.

• FREC: select edge (x, y) with highest $gain(x, y) = \Lambda(x, y)p_{\varepsilon}(x)$

- E_FREC: select edge (x, y) with highest $gain(x, y)p_{acc}(x, y)$
- PREC: select edge (x, y) with highest $gain(x, y \mid x) = \Lambda(x, y)p_{\varepsilon}(x \mid x)$
- E_PREC: select edge (x, y) with highest $gain(x, y \mid x)p_{acc}(x, y)$

Overview of Part I



Preliminary: Spectral Clustering (SC)

• Goal: find k clusters such that $\begin{cases} maximize intra-connectivity \\ minimize inter-connectivity \end{cases}$

Optimization problem

$$\min_{\mathbf{U}} \operatorname{Tr}(\mathbf{U}^T \mathbf{L} \mathbf{U})$$

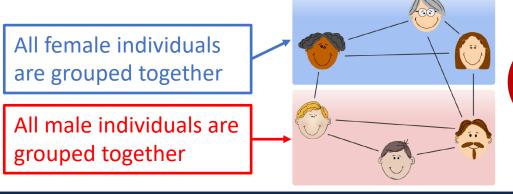
Ratio cut

s.t. $\mathbf{U}^T\mathbf{U} = \mathbf{I}$

where L is Laplacian matrix of A, U is a matrix with k orthonormal column vectors

- **Solution:** rank-*k* eigen-decomposition
 - \mathbf{U} = eigenvectors with k smallest eigenvalues

Example



Unfair clustering

The clustering results are highly correlated with gender

Fairness Measure: Balance Score

- **Intuition:** fairness as balance among clusters
- **Given:** a node set V with
 - h demographic groups: $V = V_1 \cup V_2 ... \cup V_h$
 - -k clusters: $V = C_1 \cup C_2 ... \cup C_k$
- Definition

balance
$$(C_l) = \min_{s \neq s' \in [h]} \frac{|V_s \cap C_l|}{|V_{s'} \cap C_l|} \in [0, 1], \quad \forall l \in [1, 2, ..., k]$$

- **Intuition:** higher balance → fairer
 - Each demographic group is presented with similar fractions as in the whole dataset for every cluster

balance(
$$C_1$$
)
$$= \min \left(\frac{|V_1 \cap C_1|}{|V_2 \cap C_1|}, \frac{|V_2 \cap C_1|}{|V_1 \cap C_1|} \right)$$

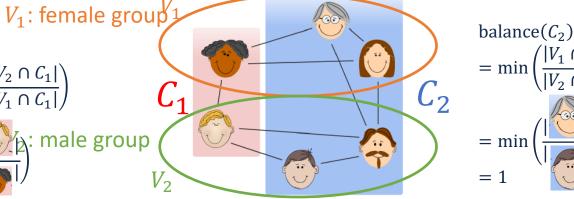
$$= \min \left(\frac{|V_1 \cap C_1|}{|V_2 \cap C_1|}, \frac{|V_2 \cap C_1|}{|V_1 \cap C_1|} \right)$$

$$= \min \left(\frac{|V_1 \cap C_1|}{|V_2 \cap C_1|}, \frac{|V_2 \cap C_1|}{|V_2 \cap C_1|} \right)$$

$$= \min \left(\frac{|V_1 \cap C_1|}{|V_2 \cap C_1|}, \frac{|V_2 \cap C_1|}{|V_1 \cap C_1|} \right)$$

$$= \min \left(\frac{|V_1 \cap C_1|}{|V_2 \cap C_1|}, \frac{|V_2 \cap C_1|}{|V_1 \cap C_1|} \right)$$

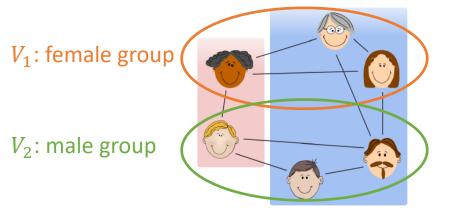
$$= \min \left(\frac{|V_1 \cap C_1|}{|V_2 \cap C_1|}, \frac{|V_2 \cap C_1|}{|V_1 \cap C_1|} \right)$$



Fair Spectral Clustering: Formulation

- **Key idea:** fairness as linear constraint
 - Given
 - The spectral embedding **U** of *n* nodes in *l* clusters $(C_1, ..., C_l)$
 - h demographic groups $(V_1, ..., V_s)$
 - Define
 - $\mathbf{f}^{(s)}[i] = 1$ if $i \in V_s$ and 0 otherwise
 - $\mathbf{F} = \text{a matrix with } \mathbf{f}^{(s)} \left(\frac{|V_s|}{n}\right) \mathbf{1}_n \ \ (s \in [1, ..., h-1]) \text{ as column vectors}$
 - **Observation:** $\mathbf{F}^T \mathbf{U} = \mathbf{0} \Leftrightarrow \text{balanced clusters (i.e., fair clusters)}$

Example



1 ' '	1 ' '	
1	0	
1	0	
1	0	
0	1	
0	1	
0	1	

Fair fraction					
0.5	0.5				
0.5	0.5				
0.5	0.5				
0.5	0.5				
0.5	0.5				
0.5	0.5				

F =	0.5	-0.5		
	0.5	-0.5		
	0.5	-0.5		
	-0.5	0.5		
	-0.5	0.5		
	-0.5	0.5		

[1] Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.

Fair Spectral Clustering: Solution

Optimization problem

$$\min_{\mathbf{I}} \operatorname{Tr}(\mathbf{U}^T \mathbf{L} \mathbf{U}) \quad \text{s. t.} \quad \mathbf{U}^T \mathbf{U} = \mathbf{I}, \mathbf{F}^T \mathbf{U} = \mathbf{0}$$

Solution

How to solve?

- -Observation: $\mathbf{F}^T\mathbf{U} = \mathbf{0} \to \mathbf{U}$ is in the null space of \mathbf{F}^T
- -Steps
 - Define $\mathbf{Z} = \text{orthonormal basis of null space of } \mathbf{F}^T$
 - Rewrite $\mathbf{U} = \mathbf{Z}\mathbf{Y}$ $\min_{\mathbf{I}\mathbf{I}} \operatorname{Tr}(\mathbf{Y}^T\mathbf{Z}^T\mathbf{L}\mathbf{Z}\mathbf{Y})$ s. t. $\mathbf{Y}^T\mathbf{Y} = \mathbf{I}$
- Method: rank-k eigen-decomposition on $\mathbf{Z}^T \mathbf{L} \mathbf{Z}$

Fair Spectral Clustering: Correctness

Given

- A random graph with nodes V by a variant of the Stochastic Block Model (SBM)
- Edge probability between two nodes i and j

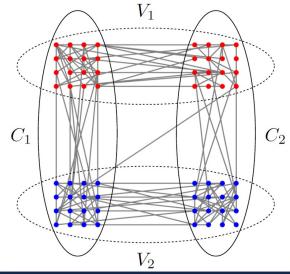
$$P(i,j) = \begin{cases} a, & i \text{ and } j \text{ in same cluster and in same group} \\ b, & i \text{ and } j \text{ not in same cluster but in same group} \\ c, & i \text{ and } j \text{ in same cluster but not in same group} \\ d, & i \text{ and } j \text{ not in same cluster and not in same group} \end{cases}$$

for some a > b > c > d

- A fair ground-truth clustering $V = C_1 \cup C_2$
- **Theorem:** Fair SC recovers the ground-truth clustering $C_1 \cup C_2$

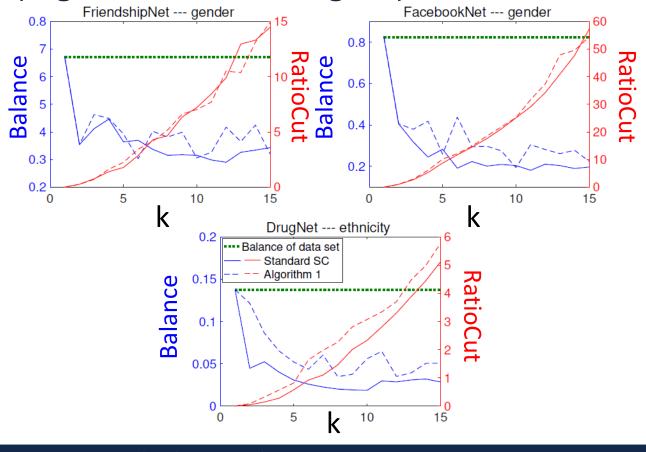
Example

- Standard SC is likely to return $V_1 \cup V_2$
- Fair SC will return $C_1 \cup C_2$

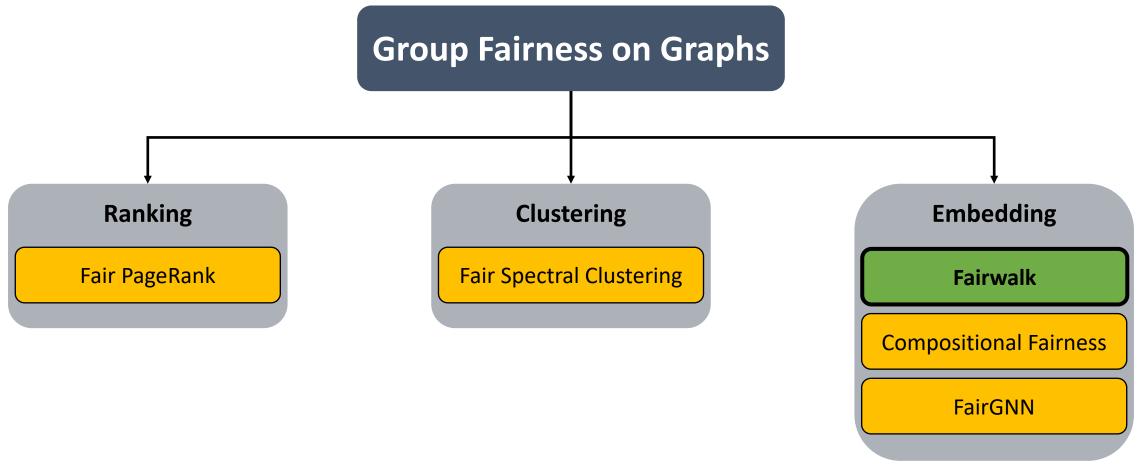


Fair Spectral Clustering: Experiment

• Observation: Fairer (higher balance score) with similar ratio cut values for the proposed method (Algorithm 1 in the figure)



Overview of Part I

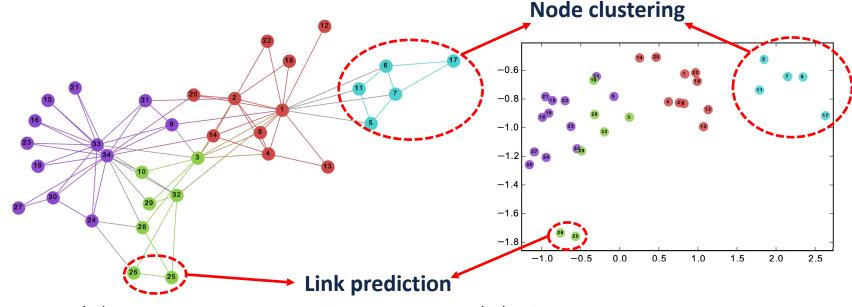


Preliminary: Node Embedding

• Motivation: learn low-dimensional node representations that preserve structural/attributive information

Applications

- Node classification
- Link prediction
- Node visualization



(a) Input: Karate Graph

(b) Output: Representation

Visualization of Node Embedding

^[2] Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD 2016.

^[1] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online Learning of Social Representations. KDD 2014.

Preliminary: Setup of Node Embedding

- Two key components: pairwise scoring function + loss function
- Pairwise scoring function
 - Suppose a node pair e = (u, v); \mathbf{z}_u is embedding of u;
 - Dot product: $s(e) = s(\langle \mathbf{z}_u, \mathbf{r}, \mathbf{z}_v \rangle) = \mathbf{z}_u^T \mathbf{z}_v$
 - TransE: $s(e) = s(\langle \mathbf{z}_u, \mathbf{r}, \mathbf{z}_v \rangle) = -\|\mathbf{z}_u + \mathbf{r} \mathbf{z}_v\|_2^2$
- Pairwise loss function
 - Suppose e_i^- is *i*-th negative sample for node pair e=(u,v)
 - Skip-gram loss

$$L_e(s(e), s(e_1^-), \dots, s(e_m^-)) = -\log[\sigma(s(e))] - \sum_{i=1}^m \log[1 - \sigma(s(e_i^-))]$$

Max-margin loss

$$L_e(s(e), s(e_1^-), \dots, s(e_m^-)) = \sum_{i=1}^m \max(1 + s(e) - s(e_i^-), 0)$$

^[1] Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online Learning of Social Representations. KDD 2014.

^[2] Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD 2016.

Preliminary: Random Walk-based Node Embedding

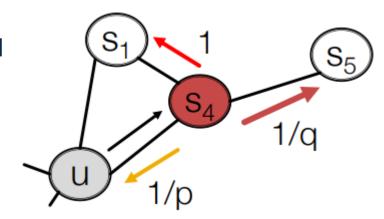
• Goal: learn node embeddings that are predictive of nodes in its neighborhood

Key idea

- Simulate random walk as a sequence of nodes
- Apply skip-gram technique to predict the context node

Example

- DeepWalk: random walk for sequence generation
- Node2vec: biased random walk for sequence generation
 - Return parameter p: how fast the walk explores the neighborhood of the starting node
 - **In-out parameter** *q*: how fast the walk **leaves** the neighborhood of the starting node



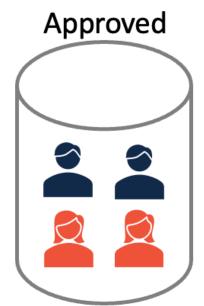
Fairness Measure: Statistical Parity

- Statistical parity
 - Given: (1) a sensitive attribute S; (2) multiple demographic groups G^{S} partitioned by S**Extension to multiple groups:** variance among the acceptance rates of each group in $\mathcal{G}^{\mathcal{S}}$ $bias^{SI}(\mathcal{G}^{\mathcal{S}}) = Var(\{acceptance - rate(\mathcal{G}^{\mathcal{S}}) | \mathcal{G}^{\mathcal{S}} \in \mathcal{G}^{\mathcal{S}}\})$
- Example: a network of three 🚨 and three 🚨

- acceptance-rate(2)=2/3
- acceptance-rate($\stackrel{2}{=}$)=2/3
- $-\operatorname{bias}^{SI} = \operatorname{Var}\left(\left\{\frac{2}{3}, \frac{2}{3}\right\}\right) = 0$

Fair result

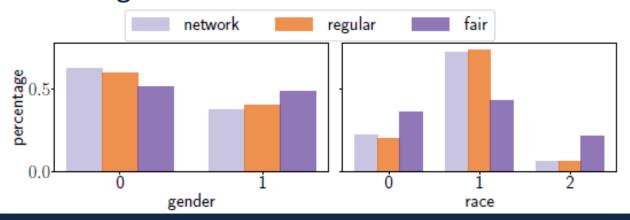
Zero bias between male and female

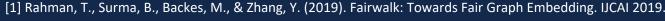


Not Approved

Fairwalk: Solution

- Key idea: modify the random walk procedure in node2vec
- Steps of Fairwalk
 - Partition neighbors into demographic groups
 - Uniformly sample a demographic group to walk to
 - Randomly select a neighboring node within the chosen demographic group
- Example: ratio of each demographic group
 - Original network vs. regular random walk vs. fair random walk





Fairwalk vs. Existing Works

- Fairwalk vs. node2vec
 - Node2vec: skip-gram model + walk sequences by original random walk
 - Fairwalk: skip-gram model + walk sequences by fair random walk
- Fairwalk vs. fairness-aware PageRank
 - Fairness-aware PageRank: the minority group should have a certain proportion of PageRank probability mass
 - Fairwalk: all demographic group have the same random walk transition probability mass

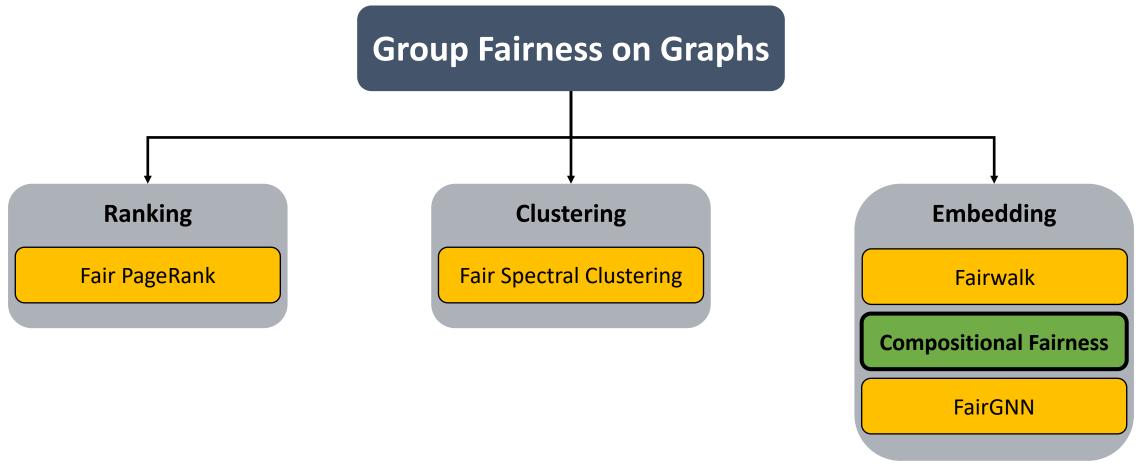
^[2] Grover, A., & Leskovec, J. (2016). node2vec: Scalable Feature Learning for Networks. KDD 2016.

Fairwalk: Results on Statistical Parity

Observations

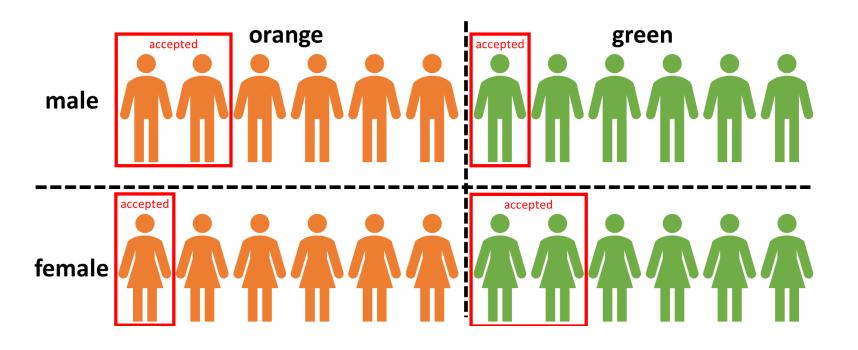
- Fairwalk achieves a more balanced acceptance rates among groups
- Fairwalk increases the fraction of cross-group recommendations

Overview of Part I



Compositional Fairness in Node Embedding

- Compositional fairness: accommodating a combination of sensitive attributes
 - Often many possible sensitive attributes for a downstream task



- Biological sex: male vs. female
- Race: orange vs. green
- * We consider the binary biological sex in this example, and we acknowledge the existence of non-binary gender identity
- * We use imaginary race groups to avoid potential offenses

Fairness Measure: Representational Invariance

• Intuition: independence between the learned embedding ${\bf z}$ and a sensitive attribute a

$$\mathbf{z}_u \perp a_u$$
, \forall node u

where a_{ij} is the sensitive value of node u

• Formulation: mutual information minimization

$$I(\mathbf{z}_u, a_u) = 0, \forall \text{ node } u$$

Corresponding to

'adversarial'

- Analogous to statistical parity in classification task
- **Key idea:** fail to predict a_u using \mathbf{z}_u
- Solution: adversarial learning
 - Maximize the error to predict sensitive feature

Compositional Fairness: Framework

- Overview: the proposed compositional fairness framework
- Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (D_k)



Key Component #1: Compositional Filter

(Also called compositional encoder, i.e., C-ENC)

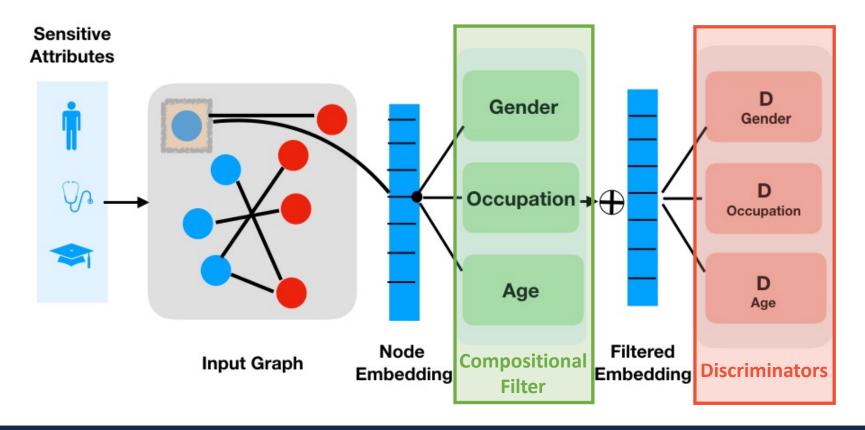
- Goal: filter sensitive information from the embeddings
 - The 'filtered' embedding should be invariant to those attributes
- Formulation

$$C-ENC(u,S) = \frac{1}{|S|} \sum_{k \in S} f_k(ENC(u))$$

- Compositional filter: a collection of filters
- Filter: trainable function f_k (neural networks, e.g., MLP)
- Input: node ID u and the set of sensitive attributes S (e.g., gender, age)
- Compositionality: summation over all sensitive attributes

Compositional Fairness: Framework

- Overview: the proposed compositional fairness framework
- Key components: (1) Compositional Filter (C-ENC) and (2) Discriminators (D_k)



Key Component #2: Discriminator

- Goal: predict the sensitive attribute from the 'filtered' embeddings
- Formulation

$$D_k(C-ENC(u,S),a^k) = Pr(a_u = a^k | C-ENC(u,S))$$

- $-D_k$: discriminator for k-th sensitive attribute
- Input: node u's 'filtered' embedding and attribute value
- $-\Pr(a_u=a^k|C-ENC(u,S))$: likelihood that node u has that attribute value

Compositional Fairness: Loss Function

Pairwise loss function

$$L(e) = L_{\text{edge}}(s(e), s(e_1^-), \dots, s(e_m^-))$$

$$+\lambda \sum_{k \in S} \sum_{a^k \in \mathcal{A}_k} \log \left(D_k \left(C - ENC(u, S), a^k \right) \right)$$

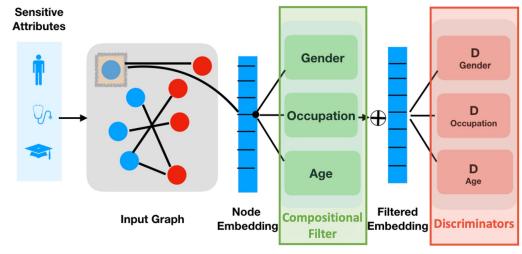
 $-L_{\rm edge}$: pairwise loss function for graph embedding

 $-\log\left(D_k(C-ENC(u,S),a^k)\right)$: the discriminator fails to predict sensitive attribute

correctly with the 'filtered' embeddings

Advantages

- Simple intuition
- Flexible and easy-to-implement module
- Plug-and-play style



Compositional Fairness: Fairness Results

- Task: classifying the sensitive attribute from the learned node embeddings
 - Baseline methods: each adversary is a 2-layer MLP
 - Baseline (no adversary): Vanilla model train without fairness consideration
 - Independent adversary: independent adversarial model for each attribute
 - Compositional adversary: The proposed full compositional model

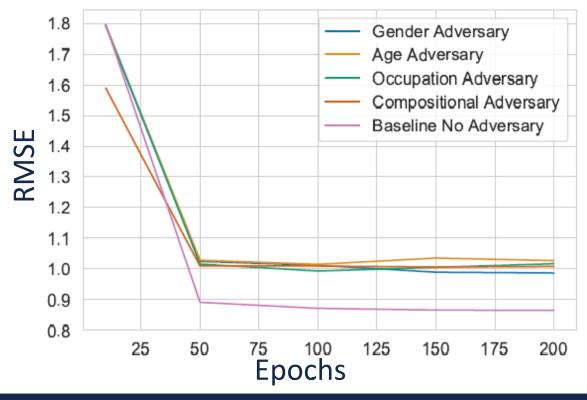
Observations

- Accuracy of compositional adversary is no better than majority classifier
- Performance of compositional adversary is at the same level with independent adversaries

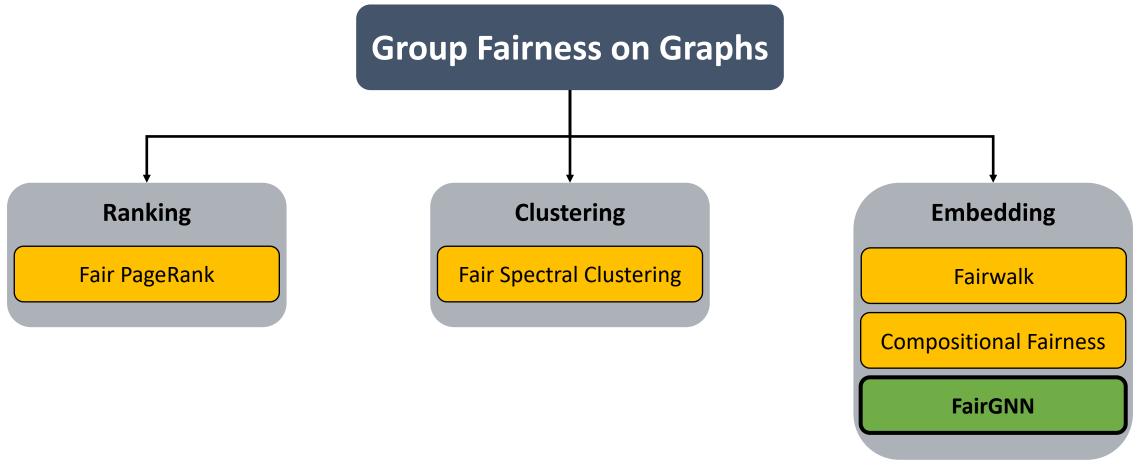
MovieLens1M	BASELINE	GENDER	AGE	OCCUPATION	Сомр.	MAJORITY	RANDOM	
	No Ad-	ADVERSARY	ADVERSARY	ADVERSARY	ADVERSARY	CLASSIFIER	CLASSIFIER	
	VERSARY						A.1.1	
GENDER	0.712	0.532	0.541	0.551	0.511	0.5	0.5 AU	
AGE	0.412	0.341	0.333	0.321	0.313	0.367	0.1417 Mic	cro
OCCUPATION	0.146	0.141	0.108	0.131	0.121	0.126	0.05 F ₁	

Compositional Fairness: Effectiveness Results

- Task: recommendation
- **Observation:** there is only a small increase in root mean squared error (RMSE) compared with the vanilla model



Overview of Part I



Limitation: Adversarial Debiasing

Adversarial debiasing

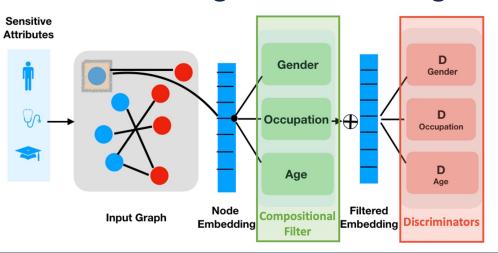
- Minimize a task-specific loss function to learn 'good' representations
- Maximize the error of predicting sensitive feature to learn 'fair' representations

Limitations

- Require the sensitive attribute of all training nodes to train a good discriminator
- Ignore the fact that sensitive information is hard to obtain due to privacy

• Question: can we apply adversarial learning-based debiasing with limited sensitive

attribute information?



FairGNN: Fairness with Limited Sensitive Attribute Information

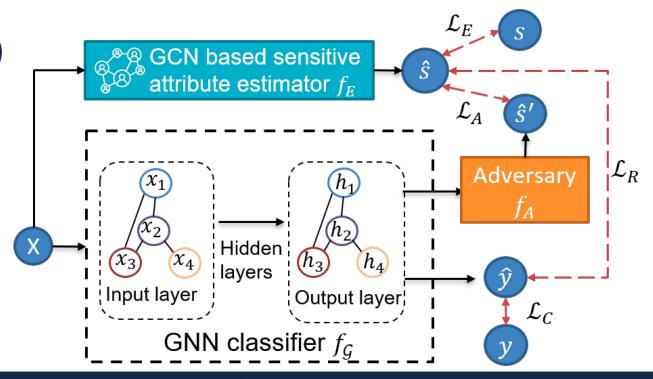
Key idea

- Train a sensitive attribute estimator to infer pseudo sensitive attribute
- Train adversary to learn fair embedding using the pseudo sensitive attribute

FairGNN framework

- A backbone graph neural network (GNN)
 - Any GNN can be the backbone
- Adversarial debiasing module
 - GCN-based sensitive attribute estimator
 - Adversary in the figure
- Covariance minimizer

Main focus

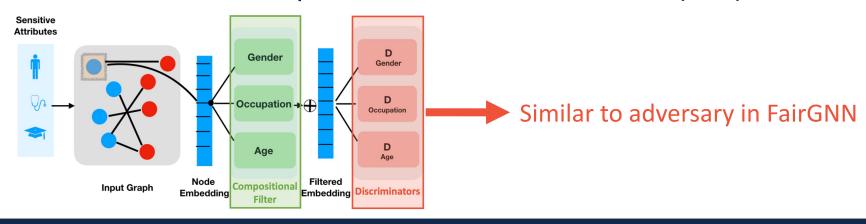


FairGNN: Adversarial Debiasing Module

- Adversary
 - Intuition: maximize the error of predicting pseudo sensitive attribute information
 - Loss function

$$\mathcal{L}_{A} = \mathbb{E}_{\mathbf{h} \sim p(\mathbf{h}|\tilde{s}=1)} [\log f_{A}(\mathbf{h})] + \mathbb{E}_{\mathbf{h} \sim p(\mathbf{h}|\tilde{s}=0)} [\log (1 - f_{A}(\mathbf{h}))]$$

- \tilde{s} : pseudo sensitive attribute information
- **h**: node embedding extracted from a graph neural network
- $\mathbf{h} \sim p(\mathbf{h}|\tilde{s}=1)$: randomly sample a node embedding whose corresponding node has $\tilde{s}=1$
- $f_A(\mathbf{h})$: output of the adversary
- Remark: similar to the discriminator in compositional fairness constraint (CFC) framework



FairGNN: Covariance Minimizer

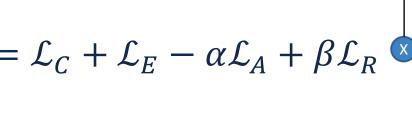
- Observation: adversarial learning is notoriously unstable to train
 - Failure to converge may cause discrimination
- **Key idea:** additional prerequisite of independence is needed to provide additional supervision signal
- **Solution:** absolute covariance between model prediction \hat{y} and pseudo sensitive attribute \hat{s} should be minimized
 - Why absolute: covariance can be negative

$$\mathcal{L}_R = |\operatorname{cov}(\hat{s}, \hat{y})| = |\mathbb{E}[(\hat{s} - \mathbb{E}[\hat{s}])(\hat{y} - \mathbb{E}[\hat{y}])]|$$

FairGNN: Overall Loss Function

Regularized learning

$$\mathcal{L} = \mathcal{L}_C + \mathcal{L}_E - \alpha \mathcal{L}_A + \beta \mathcal{L}_R$$



- Intuition
 - $-\mathcal{L}_{\mathcal{C}}$: classification loss (e.g., cross entropy) for learning representative node representation
 - $-\mathcal{L}_{E}$: sensitive attribute estimation loss for generating accurate pseudo sensitive attribute information
 - $-\mathcal{L}_A$: adversarial loss for debiasing the learned node representation
 - $-\mathcal{L}_R$: covariance for stabilizing the training of adversary

FairGNN: Experiment

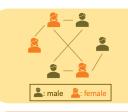
• Observation: FairGNN achieves comparable node classification accuracy with a much smaller bias

Dataset	Metrics	GCN	GAT	ALFR	ALFR-e	Debias	Debias-e	FCGE	FairGCN	FairGAT
Pokec-z	ACC (%)	70.2 ±0.1	70.4 ± 0.1	65.4 ± 0.3	68.0 ± 0.6	65.2 ± 0.7	67.5 ± 0.7	65.9 ± 0.2	70.0 ± 0.3	70.1 ± 0.1
	AUC (%)	77.2 ± 0.1	76.7 ± 0.1	71.3 ± 0.3	74.0 ± 0.7	71.4 ± 0.6	74.2 ± 0.7	71.0 ± 0.2	76.7 ± 0.2	76.5 ± 0.2
	Δ_{SP} (%)	9.9 ± 1.1	9.1 ± 0.9	2.8 ± 0.5	5.8 ± 0.4	1.9 ± 0.6	4.7 ± 1.0	3.1 ± 0.5	0.9 ± 0.5	0.5 ± 0.3
	Δ_{EO} (%)	9.1 ±0.6	8.4 ± 0.6	1.1 ±0.4	2.8 ± 0.8	1.9 ± 0.4	3.0 ± 1.4	1.7 ± 0.6	1.7 ± 0.2	0.8 ± 0.3
	ACC (%)	70.5 ±0.2	70.3 ± 0.1	63.1 ± 0.6	66.2 ± 0.5	62.6 ± 0.9	65.6 ± 0.8	64.8 ± 0.5	70.1 ± 0.2	70.0 ± 0.2
Pokec-n	AUC (%)	75.1 ± 0.2	75.1 ± 0.2	67.7 ± 0.5	71.9 ± 0.3	67.9 ± 0.7	71.7 ± 0.7	69.5 ± 0.4	74.9 ± 0.4	74.9 ± 0.4
	Δ_{SP} (%)	9.6 ± 0.9	9.4 ± 0.7	3.05 ± 0.5	4.1 ± 0.5	2.4 ± 0.7	3.6 ± 0.2	4.1 ± 0.8	0.8 ± 0.2	0.6 ± 0.3
	Δ_{EO} (%)	12.8 ±1.3	12.0 ± 1.5	3.9 ± 0.6	4.6 ± 1.6	2.6 ± 1.0	4.4 ± 1.2	5.5 ± 0.9	1.1 ± 0.5	0.8 ± 0.2
	ACC (%)	71.2 ±0.5	71.9 ±1.1	64.3 ±1.3	66.0 ± 0.4	63.1 ±1.1	65.6 ± 2.4	66.0 ± 1.5	71.1 ± 1.0	71.5 ± 0.8
NBA	AUC (%)	78.3 ± 0.3	78.2 ± 0.6	71.5 ± 0.3	72.9 ± 1.0	71.3 ± 0.7	72.9 ± 1.2	73.6 ± 1.5	77.0 ± 0.3	77.5 ± 0.7
	Δ_{SP} (%)	7.9 ± 1.3	10.2 ± 2.5	2.3 ± 0.9	4.7 ± 1.8	2.5 ± 1.5	5.3 ± 0.9	2.9 ± 1.0	1.0 ± 0.5	0.7 ± 0.5
	$\Delta_{EO}(\%)$	17.8 ± 2.6	15.9 ± 4.0	3.2 ± 1.5	4.7 ± 1.7	3.1 ± 1.9	3.1 ± 1.3	3.0 ± 1.2	1.2 ± 0.4	0.7 ± 0.3

Coffee Break

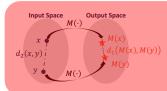
• 15 minutes coffee break

Roadmap



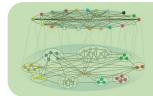
Introduction

Part I: Group Fairness on Graphs



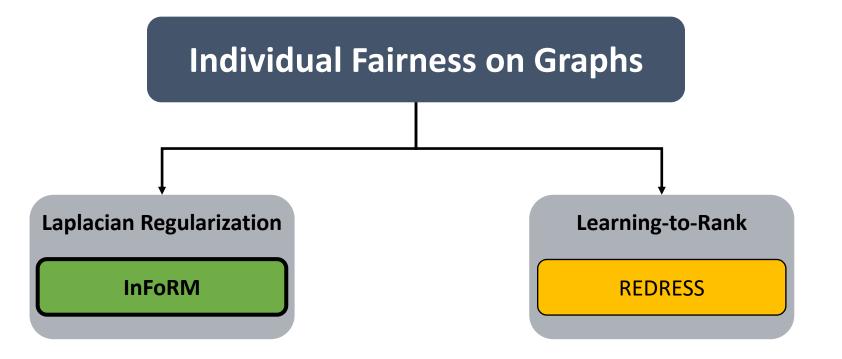
Part II: Individual Fairness on Graphs

Part III: Other Fairness on Graphs

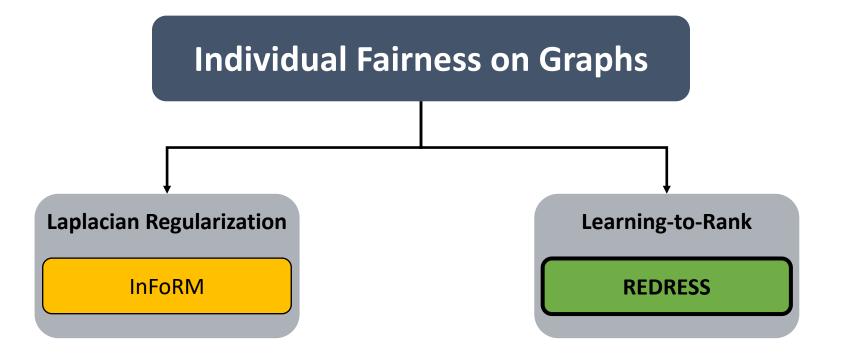


Part IV: Future Trends

Overview of Part II



Overview of Part II



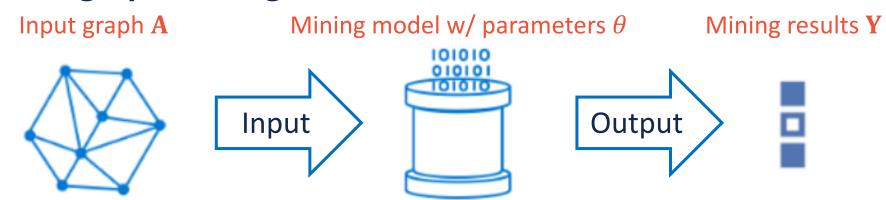
Check the details of REDRESS in the longer version of this tutorial at KDD'22

Algorithmic Fairness on Graphs: Methods and Trends

http://jiank2.web.illinois.edu/tutorial/kdd22/algofair on graphs.html

Graph Mining: An Optimization Perspective

A pipeline of graph mining



Formulation

- Input
 - Input graph A
 - Model parameters heta

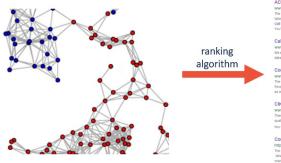
Minimize task-specific loss function $l(\mathbf{A}, \mathbf{Y}, \theta)$

- Output: mining results Y
 - Examples: ranking vectors, class probabilities, embedding

Classic Graph Mining Algorithms

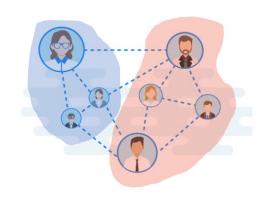
Examples of Classic Graph Mining Algorithm

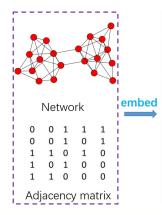
Mining Task	Task-specific Loss Function $oldsymbol{l}()$	Mining Result Y^st	Parameters
PageRank	$\min_{\mathbf{r}} c\mathbf{r}^{T}(\mathbf{I} - \mathbf{A})\mathbf{r} + (1 - c)\ \mathbf{r} - \mathbf{e}\ _{F}^{2}$	PageRank vector r	damping factor c teleportation vector ${f e}$
Spectral Clustering	$\min_{\mathbf{U}} \operatorname{Tr} (\mathbf{U}^T \mathbf{L} \mathbf{U})$ s. t. $\mathbf{U}^T \mathbf{U} = \mathbf{I}$	eigenvectors U	# clusters k
LINE (1st)	$\min_{\mathbf{X}} \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbf{A}[i,j] \left(\log g(-\mathbf{X}[j,:]\mathbf{X}[i,:]^{T}) \right) \\ + b \mathbb{E}_{j' \sim P_{n}} [\log g(-\mathbf{X}[j',:]\mathbf{X}[i,:]^{T})]$	embedding matrix X	embedding dimension d # negative samples b

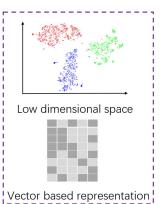




Event: CIKM







[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.

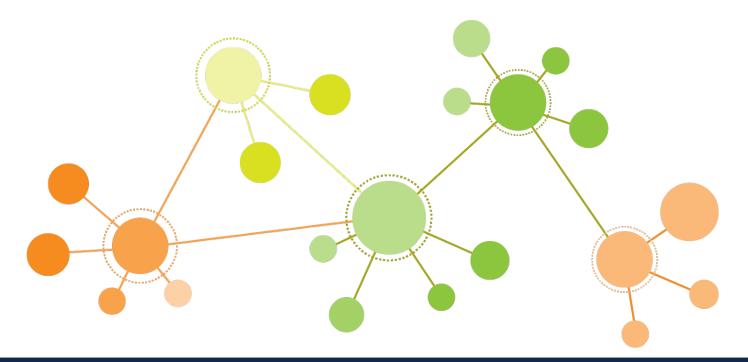
InFoRM: <u>Individual Fairness on GRaph Mining</u>

Research questions

RQ1. Measure: how to quantitatively measure individual bias?

RQ2. Algorithms: how to ensure individual fairness?

RQ3. Cost: what is the cost of individual fairness?



RQ1: InFoRM Measure

DEN.

Questions

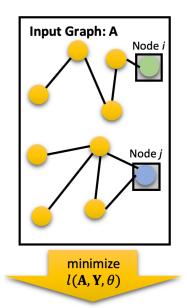
- How to determine if the mining results are fair?
- How to quantitatively measure the overall bias?

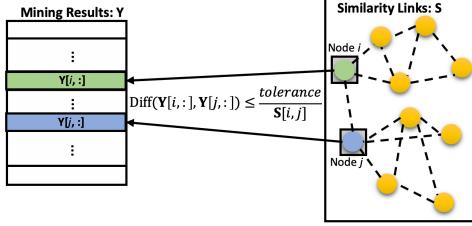
Input

- Node-node similarity matrix \$
 - Non-negative, symmetric
- Graph mining algorithm $l(\mathbf{A}, \mathbf{Y}, \theta)$
 - Loss function $l(\cdot)$
 - Additional set of parameters heta
- Fairness tolerance parameter ϵ

Output

- Binary decision on whether the mining result is fair
- Individual bias measure Bias(Y, S)





InFoRM Measure: Formulation

- **Principle:** similar nodes → similar mining results
- Mathematical formulation

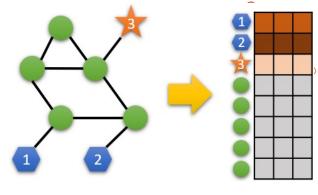
$$\|\mathbf{Y}[i,:] - \mathbf{Y}[j,:]\|_F^2 \le \frac{\epsilon}{\mathbf{S}[i,j]} \quad \forall i,j = 1,...,n$$

- Intuition: if S[i,j] is high, $\frac{\epsilon}{S[i,j]}$ is small \rightarrow push Y[i,:] and Y[j,:] to be more similar
- **Observation:** inequality should hold for every pairs of nodes i and j
 - Limitation: too many constraints → too restrictive to be fulfilled
- Relaxed criteria

$$\sum_{i=1}^{n} \sum_{j=1}^{n} \|\mathbf{Y}[i,:] - \mathbf{Y}[j,:]\|_{F}^{2} \mathbf{S}[i,j] \le m\epsilon$$

$$2 \operatorname{Tr}(\mathbf{Y}^{T} \mathbf{L}_{S} \mathbf{Y}) \le \delta$$

- -m: number of edges in the graph
- $-\delta = m\epsilon$



- (1) For any node pair (i,j) $\|\mathbf{Y}[i,:] - \mathbf{Y}[j,:]\|_F^2 \mathbf{S}[i,j] \le \epsilon$
- (2) Sum it up for all node pairs

^[2] Dwork, C., Hardt, M., Pitassi, T., Reingold, O., & Zemel, R. (2012). Fairness through Awareness. ITCS 2012.

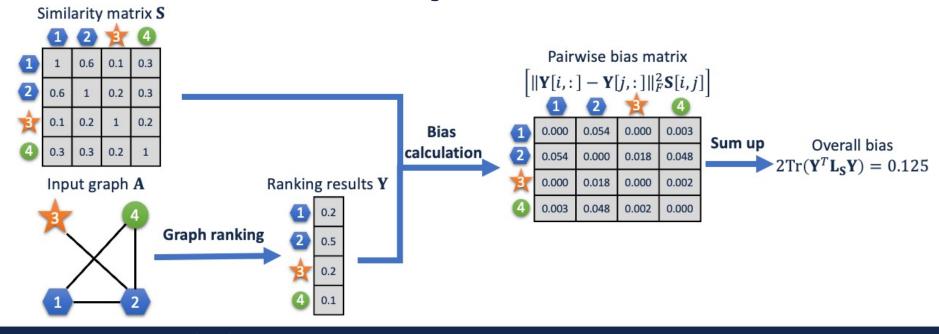
^[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.

InFoRM Measure: Solution

- InFoRM (Individual Fairness on GRaph Mining)
 - Given: (1) a graph mining result Y; (2) a symmetric similarity matrix S; and (3) a fairness tolerance δ
 - Y is individually fair w.r.t. S if it satisfies

$$\operatorname{Tr}(\mathbf{Y}^T \mathbf{L}_{\mathbf{S}} \mathbf{Y}) \leq \frac{\delta}{2}$$

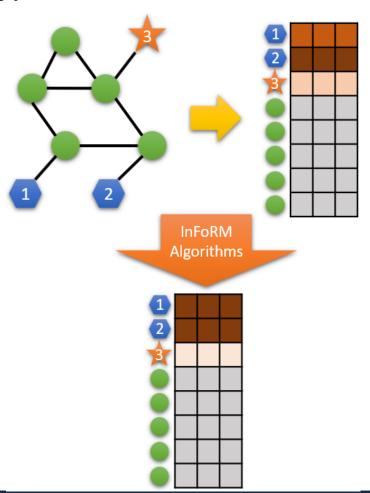
- Overall individual bias is $Bias(Y, S) = Tr(Y^T L_S Y)$



RQ2: InFoRM Algorithms

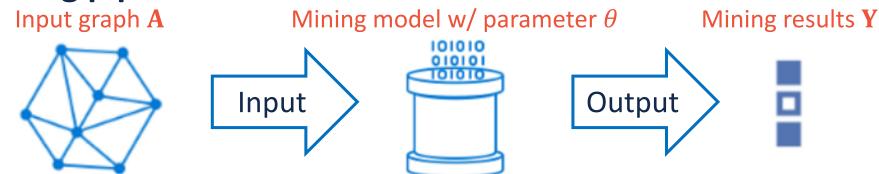
Question: how to mitigate the bias of the mining results?

- Input
 - Node-node similarity matrix S
 - Graph mining algorithm $l(\mathbf{A}, \mathbf{Y}, \theta)$
 - Individual bias measure Bias(Y, S)
 - Defined in the previous problem (InFoRM Measures)
- Output: revised mining result Y* that minimizes
 - Task-specific loss function $l(\mathbf{A}, \mathbf{Y}, \theta)$
 - Individual bias measure Bias(Y, S)



Individual Bias Mitigation

Graph mining pipeline



- Observation: bias can be introduced/amplified in each component
 - Solution: bias can be mitigated in each part
- Algorithmic frameworks
 - Debiasing the input graph
 - Debiasing the mining model
 - Debiasing the mining results

mutually complementary

Method #1: Debiasing the Input Graph

- Goal: bias mitigation via a pre-processing strategy
- Intuition: learn a new topology of graph $\widetilde{\mathbf{A}}$ such that
 - $-\widetilde{A}$ is as similar to the original graph A as possible
 - Bias of mining results on $\widetilde{\mathbf{A}}$ is minimized
- Optimization problem

Consistency in graph topology
$$\min_{\widetilde{\mathbf{A}}} J = \|\widetilde{\mathbf{A}} - \widetilde{\mathbf{A}}\|_F^2 + \alpha \text{Tr}(\mathbf{Y}^T \mathbf{L}_S \mathbf{Y})$$
s. t. $\mathbf{Y} = \operatorname{argmin}_{\mathbf{Y}} l(\widetilde{\mathbf{A}}, \mathbf{Y}, \theta)$
Bias measure

- Challenge: bi-level optimization
 - Solution: exploration of KKT conditions

Method #1: Problem Reduction

Considering the KKT conditions,

$$\min_{\widetilde{\mathbf{A}}} J = \|\widetilde{\mathbf{A}} - \mathbf{A}\|_F^2 + \alpha \text{Tr}(\mathbf{Y}^T \mathbf{L}_{\mathbf{S}} \mathbf{Y})$$
s.t. $\partial_{\mathbf{Y}} l(\widetilde{\mathbf{A}}, \mathbf{Y}, \theta) = 0$

- Proposed method
 - (1) Fix $\widetilde{\mathbf{A}}$ ($\widetilde{\mathbf{A}} = \mathbf{A}$ at initialization), find \mathbf{Y} using current $\widetilde{\mathbf{A}}$
 - (2) Fix \mathbf{Y} , update $\widetilde{\mathbf{A}}$ by gradient descent
 - (3) Iterate between (1) and (2)
- **Problem:** how to compute the gradient w.r.t. $\widetilde{\mathbf{A}}$?

Method #1: Gradient Computation

Key component to calculate, H matrix

• Computing gradient w.r.t. $\widetilde{\mathbf{A}}$

$$\frac{\partial J}{\partial \widetilde{\mathbf{A}}} = 2(\widetilde{\mathbf{A}} - \mathbf{A}) + \alpha \left[\text{Tr} \left(2\widetilde{\mathbf{Y}} \mathbf{L}_{\mathbf{S}} \frac{\partial \widetilde{\mathbf{Y}}}{\partial \widetilde{\mathbf{A}}[i,j]} \right) \right]$$

$$\frac{\mathrm{d}J}{\mathrm{d}\widetilde{\mathbf{A}}} = \begin{cases} \frac{\partial J}{\partial \widetilde{\mathbf{A}}} + \left(\frac{\partial J}{\partial \widetilde{\mathbf{A}}}\right)^T - \mathrm{diag}\left(\frac{\partial J}{\partial \widetilde{\mathbf{A}}}\right), & \text{if undirected} \\ \frac{\partial J}{\partial \widetilde{\mathbf{A}}}, & \text{if directed} \end{cases}$$

- $-\widetilde{\mathbf{Y}}$ satisfies $\partial_{\mathbf{Y}}l(\widetilde{\mathbf{A}},\mathbf{Y},\theta)=0$
- $-\mathbf{H} = \left[\operatorname{Tr} \left(2 \widetilde{\mathbf{Y}} \mathbf{L}_{\mathbf{S}} \frac{\partial \widetilde{\mathbf{Y}}}{\partial \widetilde{\mathbf{A}}[i,j]} \right) \right] \text{ is a matrix with } \mathbf{H}[i,j] = \operatorname{Tr} \left(2 \widetilde{\mathbf{Y}} \mathbf{L}_{\mathbf{S}} \frac{\partial \widetilde{\mathbf{Y}}}{\partial \widetilde{\mathbf{A}}[i,j]} \right)$
- Question: How to efficiently calculate H?

Instantiation #1: PageRank

DEA.

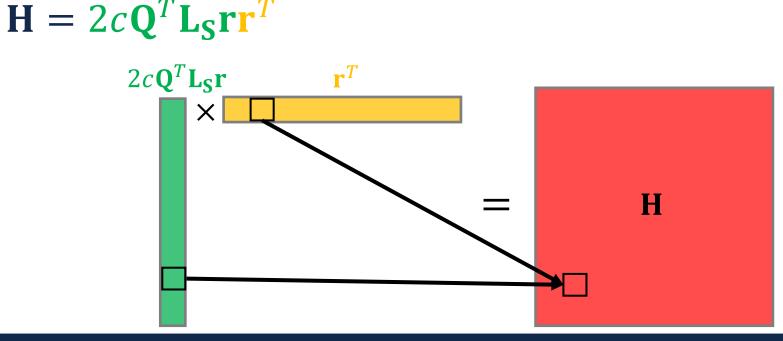
- Goal: efficient calculation of H for PageRank
- Mining results

$$\mathbf{r} = (1 - c)\mathbf{Q}\mathbf{e}$$

Partial derivatives

$$-\mathbf{Q} = (\mathbf{I} - c\mathbf{A})^{-1}$$

- Time complexity
 - Straightforward: $O(n^3)$
 - -Ours: $O(m_1 + m_2 + n)$
 - m_1 : number of edges in **A**
 - m_2 : number of edges in **S**
 - *n*: number of nodes



Instantiation #2: Spectral Clustering

DEA

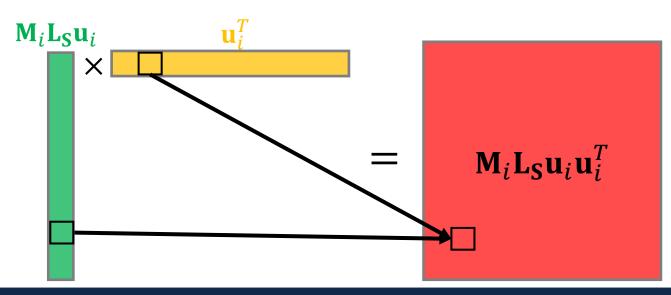
- Goal: efficient calculation of H for spectral clustering
- Mining results

 $\mathbf{U} = \text{eigenvectors with } k \text{ smallest eigenvalues}$

Partial derivatives

Vectorize diag(
$$\mathbf{M}_{i}\mathbf{L}_{\mathbf{S}}\mathbf{u}_{i}\mathbf{u}_{i}'$$
)
and stack it n times
$$\mathbf{H} = 2\sum_{i=1}^{k} \left[\operatorname{diag}(\mathbf{M}_{i}\mathbf{L}_{\mathbf{S}}\mathbf{u}_{i}\mathbf{u}_{i}^{T})\mathbf{1}_{n \times n} - \mathbf{M}_{i}\mathbf{L}_{\mathbf{S}}\mathbf{u}_{i}\mathbf{u}_{i}^{T} \right]$$

- $-(\lambda_i, \mathbf{u}_i) = i$ -th smallest eigenpair
- $-\mathbf{M}_i = (\lambda_i \mathbf{I} \mathbf{L}_{\mathbf{A}})^+$
- Time complexity
 - Straightforward: $O(k^2(m+n) + k^3n + kn^3)$
 - Ours: $O((k+r)(m_1+n)+k(m_2+n)+(k+r)^2n)$
 - k: number of clusters
 - r: number of largest eigenvalues
 - m_1 : number of edges in **A**
 - m_2 : number of edges in **S**
 - *n*: number of nodes



Instantiation #3: LINE (1st)

- Goal: efficient calculation of H for LINE (1st)
- Mining results

$$\mathbf{Y}[i,:]\mathbf{Y}[j,:]^T = \log \frac{T(\widetilde{\mathbf{A}}[i,j] + \widetilde{\mathbf{A}}[j,i])}{d_i d_j^{3/4} + d_i^{3/4} d_j} - \log b$$

- $-d_i = \text{outdegree of node } i, T = \sum_{i=1}^n d_i^{3/4} \text{ and } b = \text{number of negative samples}$
- Partial derivatives

Element-wise in-place calculation

 $\mathbf{H} = 2f(\widetilde{\mathbf{A}} + \widetilde{\mathbf{A}}^T) \circ \mathbf{L}_{\mathbf{S}} - 2\operatorname{diag}(\mathbf{B}\mathbf{L}_{\mathbf{S}})\mathbf{1}_{n \times n}$

 $-f(\cdot)$ calculates Hadamard inverse, \circ calculates Hadamard product

$$-\mathbf{B} = \frac{3}{4} f \left(\mathbf{d}^{5/4} \left(\mathbf{d}^{-1/4} \right)^T + \mathbf{d} \mathbf{1}_{1 \times n} \right) + f \left(\mathbf{d}^{3/4} \left(\mathbf{d}^{1/4} \right)^T + \mathbf{d} \mathbf{1}_{1 \times n} \right) \text{ with } \mathbf{d}^x[i] = d_i^x$$

- Time complexity
 - Straightforward: $O(n^3)$
 - Ours: $O(m_1 + m_2 + n)$
 - m_1 : number of edges in **A**
 - m_2 : number of edges in **S**
 - n: number of nodes

Stack **d** *n* times

^[2] Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., & Mei, Q. (2015). Line: Large-scale Information Network Embedding. WWW 2015.

Vectorize diag(**BL**_s)

and stack it *n* times

^[1] Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.

Method #2: Debiasing the Mining Model

- Goal: bias mitigation during model optimization
- Intuition: optimizing a regularized objective such that
 - Task-specific loss function is minimized
 - Bias of mining results as regularization penalty is minimized

• Optimization problem
$$\min_{\mathbf{Y}} J = l(\mathbf{A}, \mathbf{Y}, \theta) + \alpha \text{Tr}(\mathbf{Y}^T \mathbf{L}_S \mathbf{Y})$$
• Solution

Solution

- General: (stochastic) gradient descent $\frac{\partial J}{\partial \mathbf{v}} = \frac{\partial l(\mathbf{A}, \mathbf{Y}, \theta)}{\partial \mathbf{v}} + 2\alpha \mathbf{L_S} \mathbf{Y}$
- Task-specific: specific algorithm designed for the graph mining problem
- Advantage
 - Linear time complexity incurred in computing the gradient

Instantiations: Debiasing the Mining Model

PageRank

- Objective function: $\min c \mathbf{r}^T (\mathbf{I} \mathbf{A}) \mathbf{r} + (1 c) ||\mathbf{r} \mathbf{e}||_F^2 + \alpha \mathbf{r}^T \mathbf{L_S r}$
- Solution: $\mathbf{r}^* = c \left(\mathbf{A} \frac{\alpha}{c} \mathbf{L_S} \right) \mathbf{r}^* + (1 c) \mathbf{e}$
 - PageRank on new transition matrix $\mathbf{A} \frac{\alpha}{c} \mathbf{L_S}$
 - If $\mathbf{L_S} = \mathbf{I} \mathbf{S}$, then $\mathbf{r}^* = \left(\frac{c}{1+\alpha}\mathbf{A} + \frac{\alpha}{1+\alpha}\mathbf{S}\right)\mathbf{r}^* + \frac{1-c}{1+\alpha}\mathbf{e}$

Spectral clustering

- Objective function: $\min_{\mathbf{U}} \operatorname{Tr}(\mathbf{U}^T \mathbf{L}_{\mathbf{A}} \mathbf{U}) + \alpha \operatorname{Tr}(\mathbf{U}^T \mathbf{L}_{\mathbf{S}} \mathbf{U}) = \operatorname{Tr}(\mathbf{U}^T \mathbf{L}_{\mathbf{A} + \alpha \mathbf{S}} \mathbf{U})$
- Solution: U^* = eigenvectors of $L_{A+\alpha S}$ with k smallest eigenvalues
 - Spectral clustering on an augmented graph $\mathbf{A} + \alpha \mathbf{S}$

• LINE (1st)

Objective function

$$\max_{\mathbf{x}_{i},\mathbf{x}_{i}} \log g(\mathbf{x}_{j}\mathbf{x}_{i}^{T}) + b\mathbb{E}_{j' \in P_{n}} \left[\log g(-\mathbf{x}_{j'}\mathbf{x}_{i}^{T}) \right] - \alpha \left\| \mathbf{x}_{i} - \mathbf{x}_{j} \right\|_{F}^{2} \mathbf{S}[i,j] \quad \forall i, j = 1, ..., n$$

Solution: stochastic gradient descent

Method #3: Debiasing the Mining Results

- Goal: bias mitigation via a post-processing strategy
- Intuition: no access to either the input graph or the graph mining model

• Optimization problem Consistency of mining results, convex
$$\min_{\mathbf{Y}} |J = ||\mathbf{Y} - \overline{\mathbf{Y}}||_F^2 + \alpha \text{Tr}(\mathbf{Y}^T \mathbf{L_S} \mathbf{Y})$$

- $-\bar{\mathbf{Y}}$ is the vanilla mining results
- Closed-form solution

(2) Global optima by
$$\frac{\partial J}{\partial \mathbf{Y}} = 0$$

$$(\mathbf{I} + \alpha \mathbf{S}) \mathbf{Y}^* = \overline{\mathbf{Y}}$$

(1) Convex as long as $\alpha \geq 0$

- Solve by any linear system solvers (e.g., conjugate gradient)
- Advantages
 - No knowledge needed on the input graph
 - Model-agnostic

RQ3: InFoRM Cost

Question: how to quantitatively characterize the cost of individual fairness?

- Input
 - Vanilla mining result $ar{\mathbf{Y}}$
 - Debiased mining result Y*
 - Learned by the previous problem (InFoRM Algorithms)
- Output: an upper bound of $\|\overline{\mathbf{Y}} \mathbf{Y}^*\|_F$
- Debiasing methods
 - Debiasing the input graph
 - Debiasing the mining model

depend on specific graph topology/mining model

Debiasing the mining results → main focus

InFoRM Cost: Debiasing the Mining Results

Given

- A graph with n nodes and adjacency matrix \mathbf{A}
- A node-node similarity matrix S
- Vanilla mining results $\overline{\mathbf{Y}}$
- Debiased mining results $\mathbf{Y}^* = (\mathbf{I} + \alpha \mathbf{S})^{-1} \overline{\mathbf{Y}}$
- If $\|\mathbf{S} \mathbf{A}\|_F = \Delta$, we have

$$\|\overline{\mathbf{Y}} - \mathbf{Y}^*\|_F \le 2\alpha\sqrt{n} \left(\Delta + \sqrt{rank(\mathbf{A})}\sigma_{\max}(\mathbf{A})\right)\|\overline{\mathbf{Y}}\|_F$$

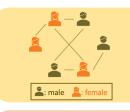
- Observation: the cost of debiasing the mining results depends on
 - The number of nodes n (i.e., size of the input graph)
 - The difference Δ between **A** and **S**
 - The rank of A → could be small due to (approximate) low-rank structures in real-world graphs
 - The largest singular value of A → could be small if A is normalized

InFoRM: Experiment

- Graph mining task: PageRank
- **Observation:** effective in mitigating bias while preserving the performance of the vanilla algorithm with relatively small changes to the original mining results
 - Similar observations for spectral clustering and LINE (1st)

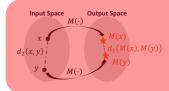
Debiasing the Input Graph												
Datasets	Jaccard Index				Cosine Similarity							
	Diff	KL	Prec@50	NDCG@50	Reduce	Time	Diff	KL	Prec@50	NDCG@50	Reduce	Time
Twitch	0.109	5.37×10^{-4}	1.000	1.000	24.7%	564.9	0.299	5.41×10^{-3}	0.860	0.899	62.9%	649.3
PPI	0.185	1.90×10^{-3}	0.920	0.944	43.4%	584.4	0.328	8.07×10^{-3}	0.780	0.838	68.7%	636.8
	Debiasing the Mining Model											
Datasets	Jaccard Index					Cosine Similarity						
	Diff	KL	Prec@50	NDCG@50	Reduce	Time	Diff	KL	Prec@50	NDCG@50	Reduce	Time
Twitch	0.182	4.97×10^{-3}	0.940	0.958	62.0%	16.18	0.315	1.05×10^{-2}	0.940	0.957	73.9%	12.73
PPI	0.211	4.78×10^{-3}	0.920	0.942	50.8%	10.76	0.280	9.56×10^{-3}	0.900	0.928	67.5%	10.50
	Debiasing the Mining Results											
Datasets	Jaccard Index					Cosine Similarity						
	Diff	KL	Prec@50	NDCG@50	Reduce	Time	Diff	KL	Prec@50	NDCG@50	Reduce	Time
Twitch	0.035	9.75×10^{-4}	0.980	0.986	33.9%	0.033	0.101	5.84×10^{-3}	0.940	0.958	44.6%	0.024
PPI	0.045	1.22×10^{-3}	0.940	0.958	27.0%	0.020	0.112	6.97×10^{-3}	0.940	0.958	45.0%	0.019

Roadmap



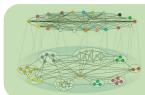
Introduction

Part I: Group Fairness on Graphs



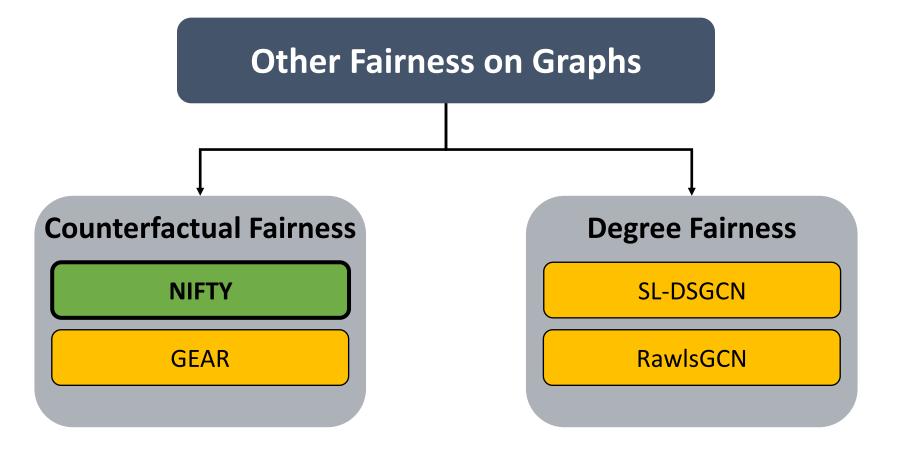
Part II: Individual Fairness on Graphs

Part III: Other Fairness on Graphs



Part IV: Future Trends

Overview of Part III



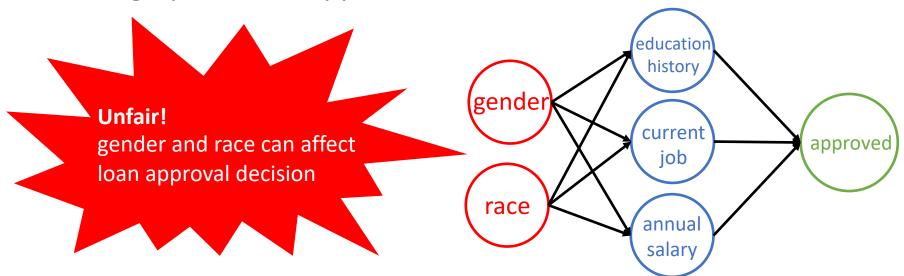
Recap: Counterfactual Fairness

counterfactual version

• **Definition:** same outcomes for 'different versions' of the same candidate

$$\Pr(\hat{y}_{s=s_1} = c | s = s_1, x = \mathbf{x}) = \Pr(\hat{y}_{s=s_2} = c | s = s_2, x = \mathbf{x})$$

- $\Pr(\hat{y}_{s=s_1} = c | s = s_1, x = \mathbf{x})$: version 1 of \mathbf{x} with sensitive demographic s_1
- $\Pr(\hat{y}_{s=s_2} = c | s = s_2, x = \mathbf{x})$: version 2 of \mathbf{x} with sensitive demographic s_2
- Intuition: perturbations on the sensitive attribute should not affect the output
- Example: causal graph of loan approval



[1] Kusner, M. J., Loftus, J., Russell, C., & Silva, R. (2017). Counterfactual Fairness. NeurIPS 2017.

Preliminary: Stability

- Definition: perturbations on the input data should not affect the output too much
- Mathematical formulation: Lipschitz condition

$$d_1(M(x), M(\tilde{x})) \le Ld_2(x, \tilde{x})$$

- -M: a mapping from input to output
- $-d_1$: distance metric for output
- $-d_2$: distance metric for input
- -L: Lipschitz constant
- $-\tilde{x}$: perturbed version of original input data x

Counterfactual Fairness vs. Stability

Given

- A: binary adjacency matrix of a graph
- \mathbf{x}_u : feature vector \mathbf{x}_u of a node u
- $-\mathbf{b}_u = [\mathbf{x}_u; \mathbf{A}[u,:]]$: information vector of node u
- $-\tilde{u}$: perturbed version of node u with information vector $\tilde{\mathbf{b}}_u$
 - Perturbation(s) on \mathbf{x}_u or $\mathbf{A}[u,:]$
- $\tilde{\mathbf{b}}_{u}$: information vector of node \tilde{u}
- $-\tilde{u}^s$: counterfactual version of node u
 - Modification on the value of sensitive attribute s in \mathbf{x}_u
- ENC(u): an encoder function that learns the embedding of node u

Counterfactual fairness

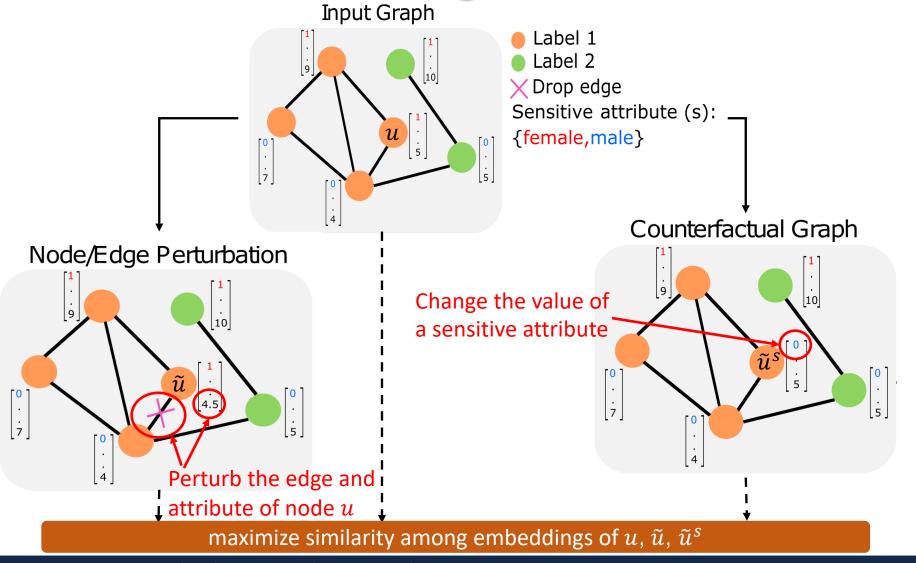
$$\|\operatorname{ENC}(u) - \operatorname{ENC}(\tilde{u})\|_{p} = 0$$

Stability

$$\|\operatorname{ENC}(u) - \operatorname{ENC}(\tilde{u})\|_{p} \le L \|\tilde{\mathbf{b}}_{u} - \mathbf{b}_{u}\|_{p}$$

• Question: can we learn node embedding that is both counterfactually fair and stable?

NIFTY: Contrastive Learning-based Framework



NIFTY: Model Architecture

Given

- $\mathbf{h}_{u}^{(k)}$: representation of node u at k-th layer
- $-\mathcal{N}(u)$: neighborhood of node u
- $-\mathbf{W}_a^{(k)}$: self-attention weight matrix at k-th layer
- $-\widetilde{\mathbf{W}}_{a}^{(k)} = \frac{\mathbf{W}_{a}^{(k)}}{\left\|\mathbf{W}_{a}^{(k)}\right\|_{p}}$: Lipschitz-normalization on $\mathbf{W}_{a}^{(k)}$
 - $\|\mathbf{W}_a^{(k)}\|_p$: spectral norm of $\mathbf{W}_a^{(k)}$
- $-\mathbf{W}_{n}^{(k)}$: weight matrix associated with the neighbors of node u
- The k-th NIFTY layer learns node representation by

$$\mathbf{h}_{u}^{(k)} = \sigma \left(\widetilde{\mathbf{W}}_{a}^{(k-1)} \mathbf{h}_{u}^{(k-1)} + \mathbf{W}_{n}^{(k-1)} \sum_{v \in \mathcal{N}(u)} \mathbf{h}_{v}^{(k-1)} \right)$$

• NIFTY encoder ENC(\cdot) = a stack of K NIFTY layers

NIFTY: Contrastive Loss

- Goal: maximize similarity among embeddings of u, \tilde{u} , \tilde{u}^s
- Augmented graph: either (1) edge/attribute perturbed graph or (2) counterfactual graph with modification on the value of sensitive attribute
- Formulation

$$L_{s}(u, \tilde{u}^{\text{aug}}) = \frac{D\left(\text{FC}(\mathbf{z}_{u}), \text{SG}(\mathbf{z}_{u}^{\text{aug}})\right) + D\left(\text{FC}(\mathbf{z}_{u}^{\text{aug}}), \text{SG}(\mathbf{z}_{u})\right)}{2}$$

- $-D(\cdot,\cdot)$: cosine distance
- $-\tilde{u}^{\mathrm{aug}}$: counterpart of node u in the augmented graph
- $-\mathbf{z}_u$, $\mathbf{z}_u^{\mathrm{aug}}$: representation of nodes u and \tilde{u}^{aug} learned by NIFTY encoder
- $FC(\cdot)$: a fully-connected layer for embedding alignment
- $-SG(\cdot)$: stop-grad operator, stop calculating the gradient with respect to its input
- Intuition: minimize L_s = $FC(\mathbf{z}_u)$ and $\mathbf{z}_u^{\mathrm{aug}}$ are similar $FC(\mathbf{z}_u^{\mathrm{aug}})$ and \mathbf{z}_u are similar

NIFTY: Overall Loss Function

Overall loss function

$$L = (1 - \lambda)L_c + \lambda(\mathbb{E}_u[L_s(u, \tilde{u})] + \mathbb{E}_u[L_s(u, \tilde{u}^s)])$$

- $-\lambda$: regularization hyperparameter
- $-L_c$: task-specific loss
 - E.g., cross-entropy loss for node classification
- $-\mathbb{E}_{u}[L_{s}(u,\tilde{u})]$: similarity loss of original graph and the edge/attribute perturbed graph
- $-\mathbb{E}_{u}[L_{s}(u,\tilde{u}^{s})]$: similarity loss of original graph and the counterfactual graph

• Intuition: jointly minimize

- The task-specific loss
- Distance among embeddings of u, \tilde{u} and \tilde{u}^s , for each node u

NIFTY: Counterfactual Fairness

Given

- ENC(\cdot): a K-layer NIFTY encoder
 - $\widetilde{\mathbf{W}}_a^{(k)}$: self-attention weight matrix at k-th layer
- s: a binary-valued sensitive attribute s
- -u: a node u in the graph
- $-\tilde{u}^s$: the counterfactual version of node u by flipping the value of s
- NIFTY is counterfactually fair with the unfairness upper bounded as follows

$$\|\operatorname{ENC}(u) - \operatorname{ENC}(\widetilde{u}^s)\|_p \le \prod_{k=1} \|\widetilde{\mathbf{W}}_a^{(k)}\|_p$$

Remarks

- Upper bounded counterfactual unfairness (i.e., $\|\text{ENC}(u) \text{ENC}(\tilde{u}^s)\|_p$)
- Normalized $\widetilde{\mathbf{W}}_a^{(k)}$ \rightarrow counterfactually fair $\mathrm{ENC}(u)$

NIFTY: Stability

Given

- − ENC(·): a K-layer NIFTY encoder
 - $\widetilde{\mathbf{W}}_a^{(k)}$: self-attention weight matrix at k-th layer
- s: a binary-valued sensitive attribute
- $-\mathbf{b}_u$: a node u with information vector \mathbf{b}_u
- $-\tilde{\mathbf{b}}_u$: perturbed version \tilde{u} of node u with information vector
- NIFTY learns stable node embedding

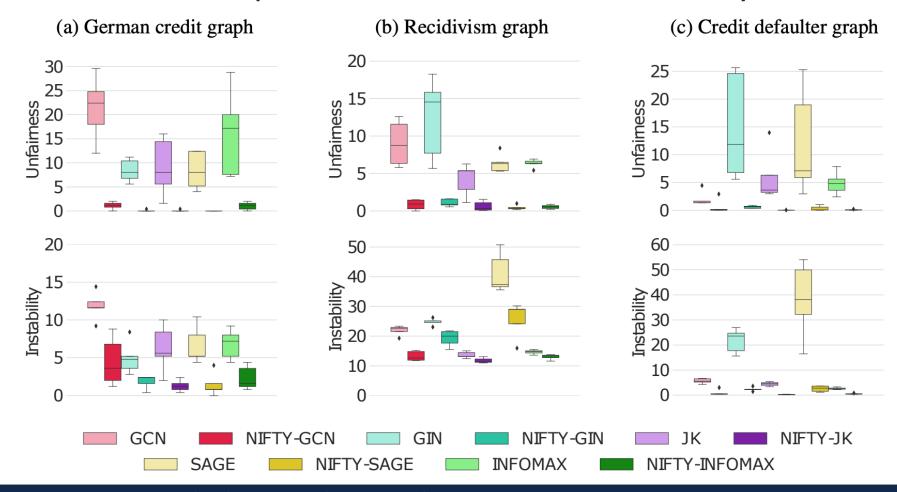
$$\|\operatorname{ENC}(u) - \operatorname{ENC}(\tilde{u})\|_{p} \le \prod_{k=1}^{K} \|\widetilde{\mathbf{W}}_{a}^{(k)}\|_{p} \|\mathbf{b}_{u} - \widetilde{\mathbf{b}}_{u}\|_{p}$$

Remarks

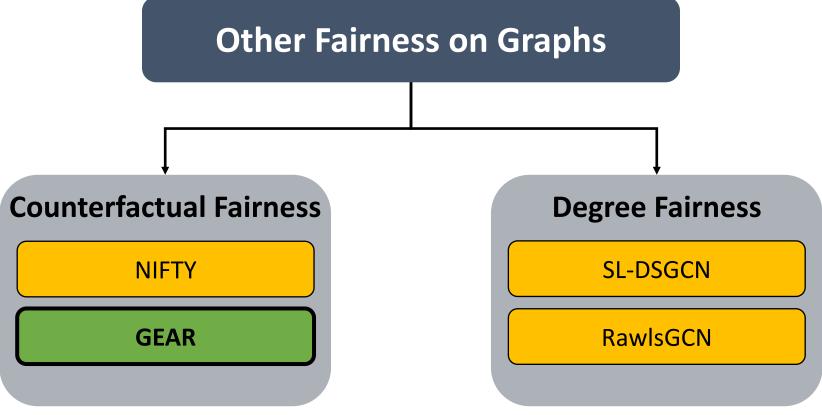
- Lipschitz constant = $\prod_{k=1}^{K} \|\widetilde{\mathbf{W}}_{a}^{(k)}\|_{n}$
- Normalized $\widetilde{\mathbf{W}}_a^{(k)} \rightarrow \text{small Lipschitz constant} \rightarrow \text{stable ENC}(u)$

NIFTY: Experiment

• Observation: NIFTY improves both fairness and stability



Overview of Part III

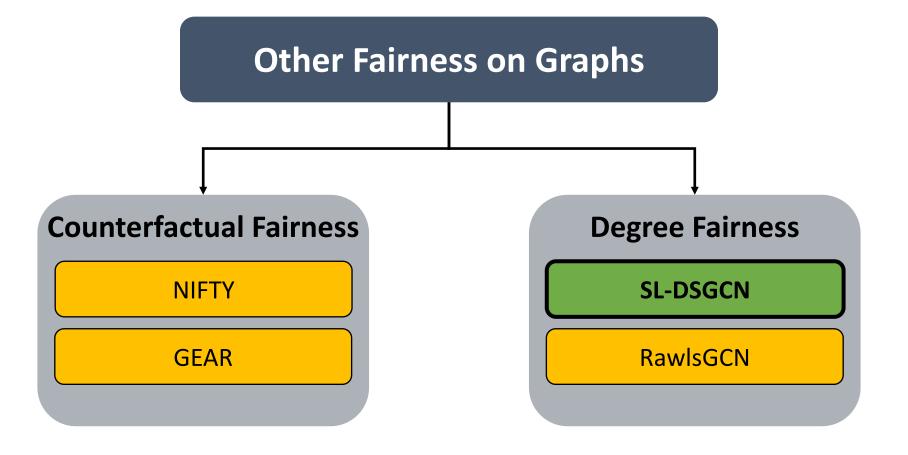


Check the details of GEAR in the longer version of this tutorial at KDD'22

Algorithmic Fairness on Graphs: Methods and Trends

http://jiank2.web.illinois.edu/tutorial/kdd22/algofair on graphs.html

Overview of Part III

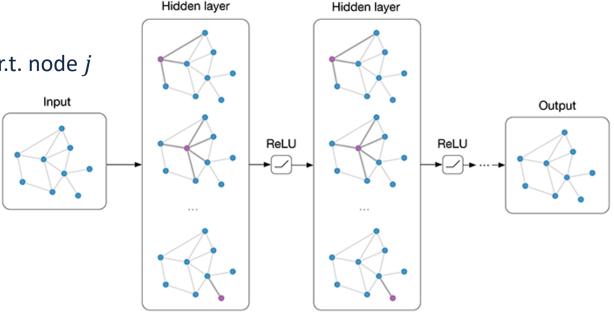


Preliminary: Graph Convolutional Network (GCN)

- Key idea: iteratively performing neighborhood aggregation for node representation learning
- Formulation: graph convolution

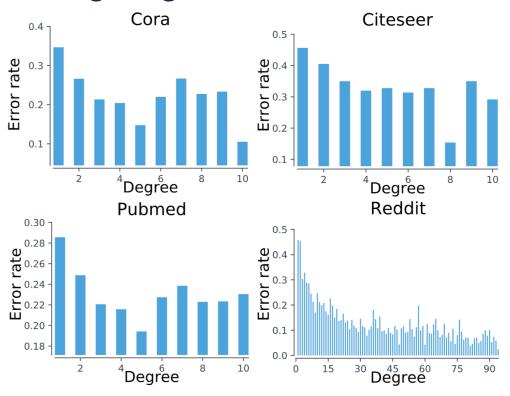
$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\mathbf{W}^{(l)} \left(\sum_{j \in \mathcal{N}_{i} \cup \{i\}} a_{ij} \mathbf{h}_{j}^{(l)} \right) \right)$$

- $\mathbf{h}_{i}^{(l)}$: the representation of node j at l-th layer
- $-\mathbf{W}^{(l)}$: weight parameters at l-th layer
- $-a_{ij}=\frac{1}{\sqrt{d_i+1}\sqrt{d_j+1}}$: weight of the edge between node i w.r.t. node j
- $-d_i, d_j$: degree of node i and node j, respectively
- $-\mathcal{N}_i$: neighborhood of node i



GCN Analysis: Error Rate vs. Node Degree

• Observation: low-degree nodes get higher error rate

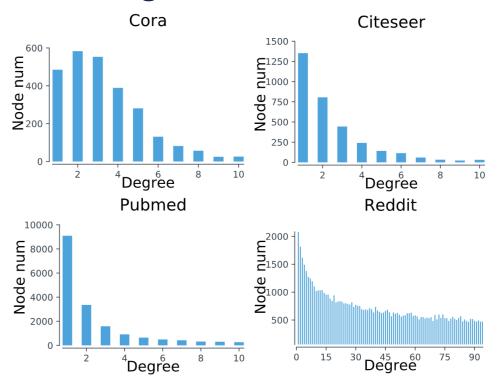


Questions

- Why is the correlation between error rate and degree bad?
- why should we concern about low-degree nodes?

Degree Distributions of Real-world Graphs

Degree distribution is often long-tailed



- GCN might
 - Benefit a relatively small fraction of high-degree nodes
 - Overlook a relatively large fraction of low-degree nodes

GCN Limitations: Degree Bias

- Key steps in GCN training
 - Learn node representations by message passing
 - Train the model parameters by backpropagation
- Question #1: does GCN fail because of the message passing schema?
 - Hypothesis #1: high-degree nodes have higher influence to affect the training of GCN on other nodes
- Question #2: does GCN fail during the backpropagation?
 - Only information of labeled nodes can be backpropagated to its neighbors
 - Hypothesis #2: high-degree nodes are more likely to connect with labeled nodes

Hypothesis #1: Influence of High-Degree Nodes

Given

- $\mathcal{V}_{labeled}$: a set of labeled nodes $\mathcal{V}_{labeled}$ $\mathbf{W}^{(L)}$: the weight of L-th layer in an L-layer GCN
- $-d_i$: degree of node i
- $-\mathbf{x}_i$: input node feature of node i
- $-\mathbf{h}_{i}^{(L)}$: output embeddings of node i learned by the L-layer GCN
- Influence of node i to node k

$$\mathbb{E}\left[\partial \mathbf{h}_{i}^{(L)}/\partial \mathbf{x}_{k}\right] \propto \sqrt{d_{i}d_{k}}\mathbf{W}^{(L)}$$

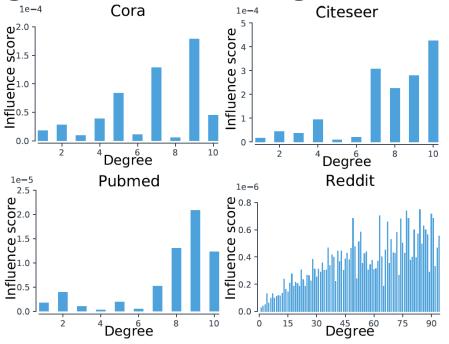
Influence of node i on GCN training

$$S(i) = \sum_{k \in \mathcal{V}_{\text{labeled}}} \left\| \mathbb{E} \left[\partial \mathbf{h}_i^{(L)} / \partial \mathbf{x}_k \right] \right\| \propto \sqrt{d_i} \| \mathbf{W}^{(L)} \| \sum_{k \in \mathcal{V}_{\text{labeled}}} \sqrt{d_k}$$

- Remark
 - For two nodes i and j, if $d_i > d_i$, then S(i) > S(j)
 - → Node with higher degree will have higher influence on GCN training

Hypothesis #1: Visualization of Node Influence

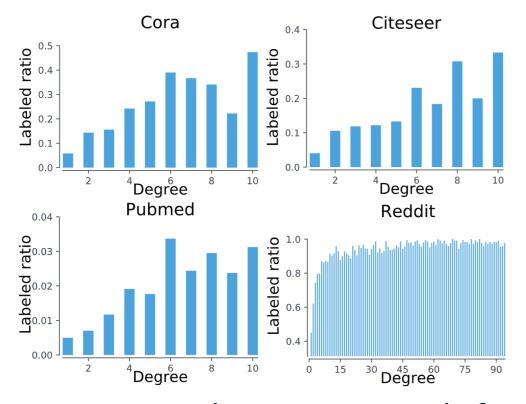
- Goal: visualize the influence score $S(\cdot)$ for each node
- Observation: high-degree nodes have higher influence score



Question #1: how to mitigate the impact of node degree?

Hypothesis #2: Ratio of Labeled Neighbors

• Observation: high-degree nodes are more likely to have labeled neighbors

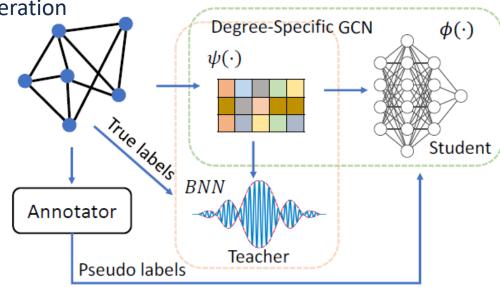


 Question #2: how to ensure enough training signals for low-degree nodes receive

SL-DSGCN: Framework

- Strategy: pre-training + fine-tuning
- Pre-training
 - Mitigate the impact of node degree by degree-specific GCN
 - Pre-train
 - A Bayesian neural network (BNN) with true labels for further use during fine-tuning

• An annotator through label propagation for pseudo-label generation



Degree-specific Graph Convolutional Network (DSGCN)

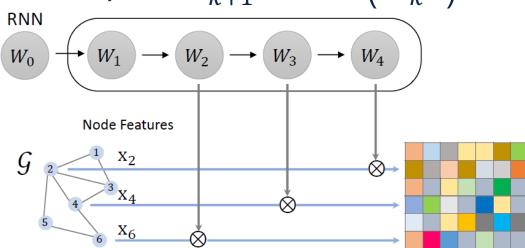
- Key components
 - A stack of degree-specific graph convolution layer for embedding learning
 - A fully-connected layer for node classification
- Given: the settings of l-th graph convolution layer and
 - $-d_i$: the degree of node i
 - $-\mathbf{W}_{d_i}^{(l)}$: the degree-specific weight w.r.t. degree of node j
- Degree-specific graph convolution layer

$$\mathbf{h}_{i}^{(l+1)} = \sigma \left(\sum_{j \in \mathcal{N}_{i} \cup \{i\}} a_{ij} \left(\mathbf{W}^{(l)} + \mathbf{W}_{d_{j}}^{(l)} \right) \mathbf{h}_{j}^{(l)} \right)$$

• Question: how to generate the degree-specific weight?

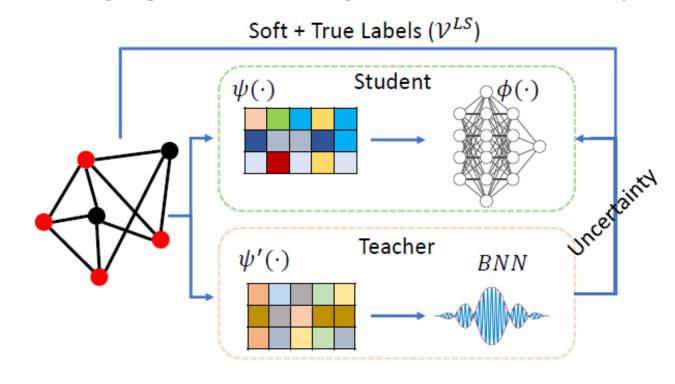
Degree-specific Weight Generation

- Hypothesis: existence of the complex relations among nodes with different degrees
- Method: weight generation with recurrent neural network (RNN)
- Given
 - A RNN
 - $-\mathbf{W}_{k}^{(l)}$ = degree-specific weight of degree k at l-th layer
- Weight of degree k+1 at l-th layer is $\mathbf{W}_{k+1}^{(l)} = \mathrm{RNN}\left(\mathbf{W}_{k}^{(l)}\right)$



SL-DSGCN: Framework

- Strategy: pre-training + fine-tuning
- Fine-tuning
 - Provide pseudo training signals to low-degree nodes for self-supervision



Fine-Tuning with Self-Supervised Learning

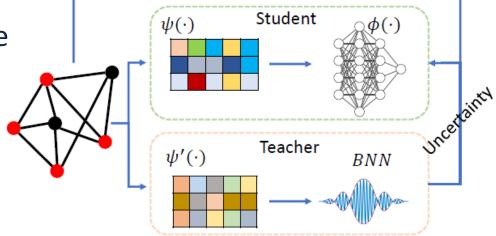
- Student network: degree-specific GCN (DSGCN)
- Teacher network: Bayesian neural network (BNN)
 - Provide additional softly-labeled set for self-supervision in student network

Nodes labeled identically by the pseudo-label annotator and BNN

- Exponentially decay the learning rate of labeled and softly-labeled nodes soft + True Labels (\mathcal{V}^{LS})

by uncertainty score

• Higher uncertainty score → smaller learning rate



SL-DSGCN: Effectiveness Results

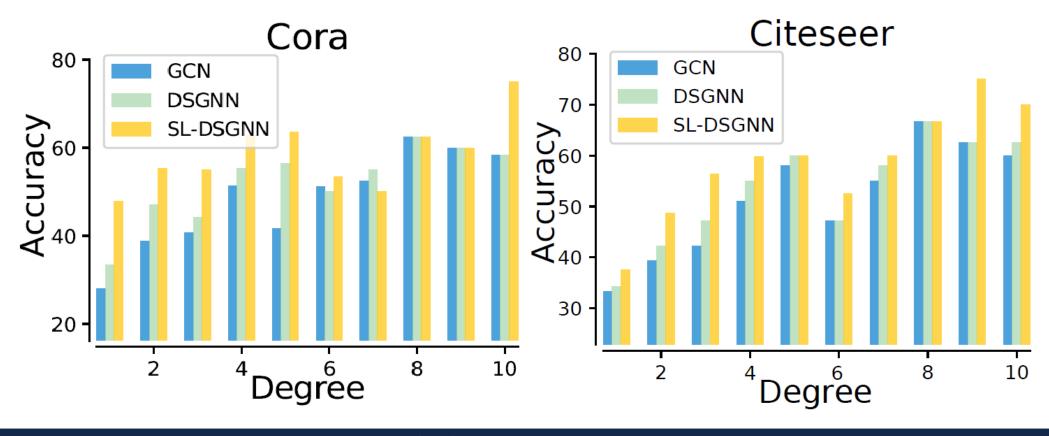
Observations

- Increased label rate implies higher classification accuracy
- Self-supervision provides useful information (i.e., high accuracy when the label rate is low)
- SL-DSGCN outperforms all baseline methods

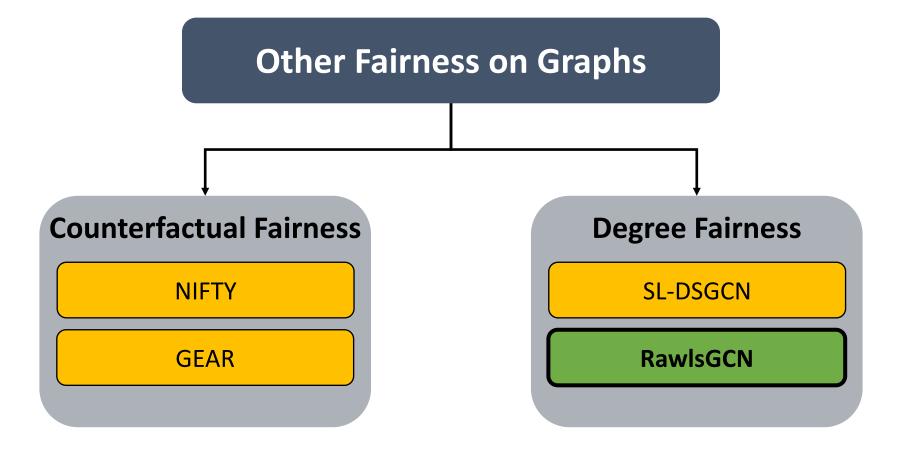
Dataset			Cora					Citeseer				PubMed	
Label Rate	0.5%	1%	2%	3%	4%	0.5%	1%	2%	3%	4%	0.03%	0.06%	0.09%
LP	29.05	38.63	53.26	70.31	73.47	32.10	40.08	42.83	45.32	49.01	39.01	48.7	56.73
ParWalks	37.01	41.40	50.84	58.24	63.78	19.66	23.70	29.17	35.61	42.65	35.15	40.27	51.33
GCN	35.89	46.00	60.00	71.15	75.68	34.50	43.94	54.42	56.22	58.71	47.97	56.68	63.26
DEMO-Net	33.56	40.05	61.18	72.80	77.11	36.18	43.35	53.38	56.5	59.85	48.15	57.24	62.95
Self-Train	43.83	52.45	63.36	70.62	77.37	42.60	46.79	52.92	58.37	60.42	57.67	61.84	64.73
Co-Train	40.99	52.08	64.27	73.04	75.86	40.98	56.51	52.40	57.86	62.83	53.15	59.63	65.50
Union	45.86	53.59	64.86	73.28	77.41	45.82	54.38	55.98	60.41	59.84	58.77	60.61	67.57
Interesction	33.38	49.26	62.58	70.64	77.74	36.23	55.80	56.11	58.74	62.96	59.70	60.21	63.97
M3S	50.28	58.74	68.04	75.09	78.80	48.96	53.25	58.34	61.95	63.03	59.31	65.25	70.75
SL-DSGCN	53.58	61.36	70.31	80.15	81.05	54.07	56.68	59.93	62.20	64.45	61.15	65.68	71.78

SL-DSGCN: Fairness Results

- Observations: degree-wise classification accuracy
 - SL-DSGCN > DSGNN > GCN for all degrees, especially low degrees



Overview of Part III



Limitations: SL-DSGCN

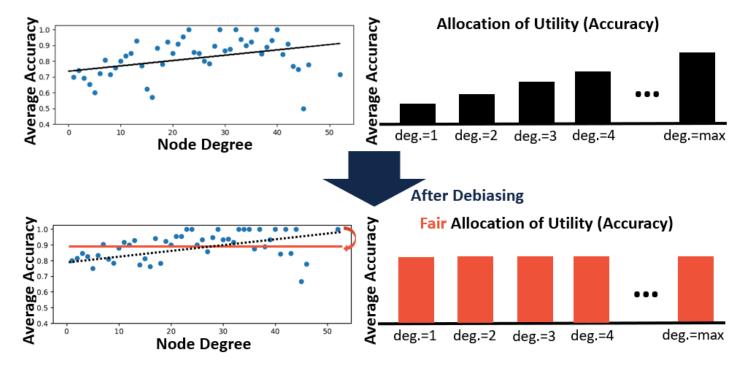
- SL-DSGCN
 - Degree-specific weight: learn degree-specific weights, generated by RNN
 - Self-supervised learning: generate pseudo labels for additional training signals
- Limitation 1: additional number of weight parameters
 - Weight parameters of RNN for degree-specific weight generation
- Limitation 2: change(s) to the GCN architecture
 - Degree-specific weight generator
 - Self-supervised learning module
- Question: how to mitigate degree-related unfairness without
 - Hurting the scalability of GCN
 - Changing the GCN architecture?

Fairness = Just Allocation of Utility

• **Intuition:** utility = resource to allocate

• Expected result: similar utility (accuracy) for all nodes regardless of their

degrees

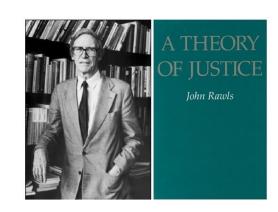


Question: how to define such fairness?

Recap: Rawlsian Difference Principle

- Origin: distributive justice
- Goal: fairness as just allocation of social welfare

"Inequalities are permissible when they maximize [...] the long-term expectations of the least fortunate group."



-- John Rawls, 1971

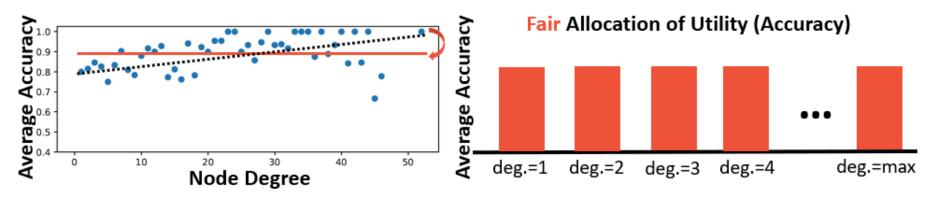
- Intuition: treat utility of GCN as welfare to allocate
 - Least fortunate group → group with the smallest utility
 - **Example:** classification accuracy for node classification

[1] Rawls, J. (1971). A Theory of Justice. Press, Cambridge 1971.

- Justice as fairness
 - Justice is a virtue of instituitions
 - Free persons enjoy and acknowledge the rules
- Well-ordered society
 - Designed to advance the good of its members
 - Regulated by a public conception of justice

RawlsGCN: Problem Definition

- Given
 - $-\mathcal{G} = (\mathbf{A}, \mathbf{X})$: an undirected graph
 - θ : weights of an L-layer GCN
 - − *J*: a task-specific loss
- Find: a well-trained GCN that
 - Minimizes the task-specific loss
 - Achieves a fair allocation of utility for the groups of nodes with the same degree
- Key question: when is the allocation of utility fair?

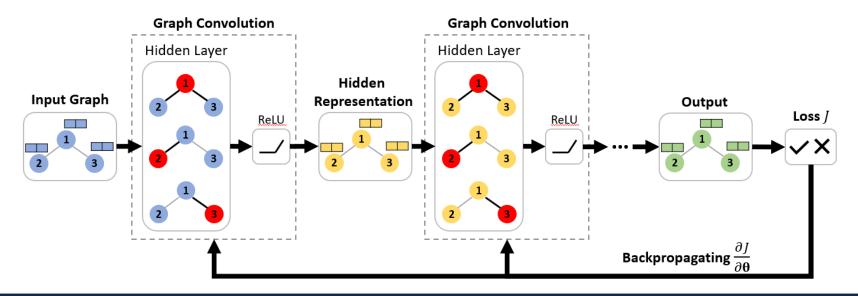


RawlsGCN: Fair Allocation of Utility

- Key idea: consider the stability of the Rawlsian difference principle
- How to achieve the stability?
 - Keep improving the utility of the least fortunate group
- When do we achieve the stability?
 - No least fortunate group
 - All groups have the balanced utility
- Challenge: non-differentiable utility
 - Workaround: use loss function as the proxy of utility
 - Rationale: minimize loss in order to maximize utility
- Goal: fair allocation of utility → balanced loss
- Question: why does the loss vary after training the GCN?

RawlsGCN: Source of Unfairness

- Intuition: understand why the loss varies after training
- What happens during training?
 - Extract node representations and make predictions
 - Calculate the task-specific loss J
 - Update model weights θ by the gradient $\frac{\partial J}{\partial \theta}$ \leftarrow key component for training
- Question: is the unfairness caused by the gradient?



RawlsGCN: Gradient of Model Weights

Given

- An undirected graph G = (A, X) with $\widehat{A} = \widetilde{D}^{-\frac{1}{2}}(A + I)\widetilde{D}^{-\frac{1}{2}}$
- An arbitrary l-th graph convolution layer
 - Weight matrix $\mathbf{W}^{(l)}$
 - Hidden representations before activation $\mathbf{E}^{(l)} = \widehat{\mathbf{A}}\mathbf{H}^{(l-1)}\mathbf{W}^{(l)}$
- A task-specific loss J
- The gradient of J w.r.t. $\mathbf{W}^{(l)}$

$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \left(\mathbf{H}^{(l-1)}\right)^T \widehat{\mathbf{A}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}$$

RawlsGCN: Unfairness in Gradient

Gradient of loss w.r.t. weight

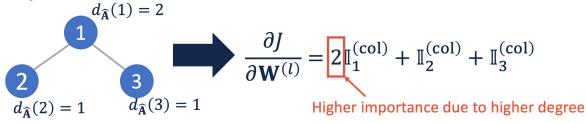
$$\frac{\partial J}{\partial \mathbf{W}^{(l)}} = \sum_{i=1}^{n} d_{\widehat{\mathbf{A}}}(i) \mathbb{I}_{i}^{(\text{col})} = \sum_{j=1}^{n} d_{\widehat{\mathbf{A}}}(j) \mathbb{I}_{j}^{(\text{row})}$$
Row sum of *j*-th row

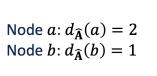
Column sum of *i*-th column

$$- \mathbb{I}_{i}^{(\text{col})} = \left(\mathbb{E}_{j \sim \mathcal{N}(i)} \left[\mathbf{H}^{(l-1)}[j,:] \right] \right)^{T} \frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}$$

$$- \mathbb{I}_{j}^{(\text{row})} = \left(\mathbf{H}^{(l-1)}[j,:]\right)^{T} \mathbb{E}_{i \sim \mathcal{N}(j)} \left[\frac{\partial J}{\partial \mathbf{E}^{(l)}[i,:]}\right]$$

- **Intuitions** Sampling from *j*-th neighborhood
 - $\mathbb{I}_i^{(\mathrm{col})}$ and $\mathbb{I}_j^{(\mathrm{row})}$ o The directions for gradient descent
 - $-d_{\widehat{\mathbf{A}}}(i)$ and $d_{\widehat{\mathbf{A}}}(j) \rightarrow$ The importance of the direction
- Higher degree → more focus on that direction
- Symmetric normalization in $\widehat{\boldsymbol{A}}$
 - Normalize the largest eigenvalue, not degree
 - High degree in A \rightarrow high degree in $\widehat{\mathbf{A}}$
- Solution: doubly stochastic matrix $\widehat{\mathbf{A}}_{DS}$

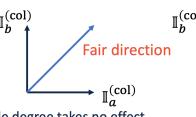


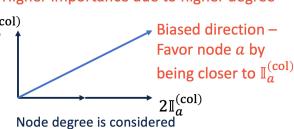


Degree in $\widehat{ extsf{A}}$

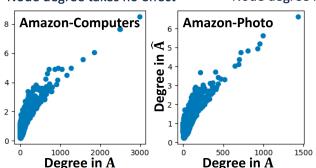
Coauthor-Physics

Degree in A





Node degree takes no effect



Degree in A Degree

RawlsGCN: Doubly Stochastic Matrix Computation

- How to mitigate unfairness in $\frac{\partial J}{\partial \mathbf{w}^{(l)}}$?
 - Intuition: enforce row sum and column sum of $\widehat{\mathbf{A}}$ to be 1
 - **Solution:** doubly stochastic normalization on $\widehat{\mathbf{A}}$
- Method: Sinkhorn-Knopp algorithm
 - Key idea: iteratively normalize the row and column of a matrix
 - Complexity: linear time and space complexity
 - Convergence: always converge iff. the matrix has total support
- Existence for GCN: the Sinkhorn-Knopp algorithm always finds the unique doubly stochastic form \widehat{A}_{DS} of \widehat{A}

$$-\widehat{\mathbf{A}} = \widetilde{\mathbf{D}}^{-\frac{1}{2}}(\mathbf{A} + \mathbf{I})\widetilde{\mathbf{D}}^{-\frac{1}{2}}$$

 $-\widetilde{\mathbf{D}}$ = degree matrix of $\mathbf{A} + \mathbf{I}$ for a graph \mathbf{A}

RawlsGCN: A Family of Debiasing Methods

Gradient computation

$$\left(\frac{\partial J}{\partial \mathbf{W}^{(l)}}\right)_{\mathrm{fair}} = \left(\mathbf{H}^{(l-1)}\right)^T \widehat{\mathbf{A}}_{\mathrm{DS}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}}$$
 - Key term: $\widehat{\mathbf{A}}_{\mathrm{DS}}$ - doubly-stochastic normalization of $\widehat{\mathbf{A}}$

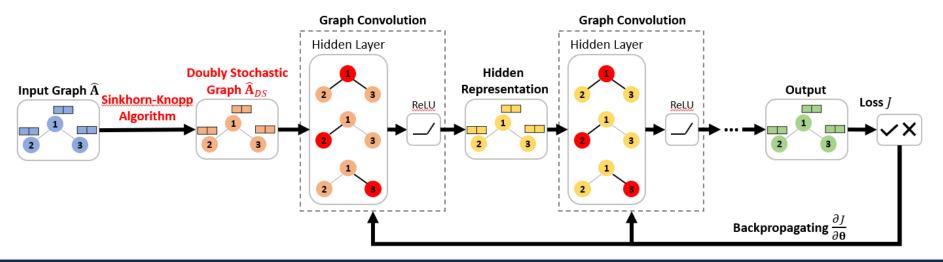
- Proposed methods
 - RawlsGCN-Graph: during data pre-processing, compute \widehat{A}_{DS} and treat it as the input of GCN
 - RawlsGCN-Grad: during optimization (in-processing), treat \widehat{A}_{DS} as a normalizer to equalize the importance of node influence

RawlsGCN-Graph: Pre-processing

 Intuition: normalize the input renormalized graph Laplacian into a doubly stochastic matrix

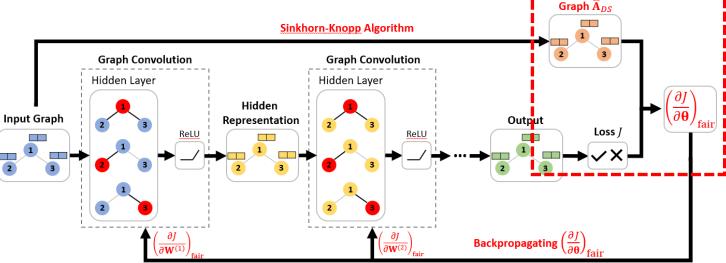
Key steps

- 1. Precompute the renormalized graph Laplacian $\widehat{\mathbf{A}}$
- 2. Precompute $\widehat{\mathbf{A}}_{DS}$ by applying the Sinkhorn-Knopp algorithm
- 3. Input \widehat{A}_{DS} and X (node features) to GCN for training



RawlsGCN-Grad: In-processing

- Intuition: equalize the importance of node influence in gradient computation
- Key steps
 - 1. Precompute the renormalized graph Laplacian $\widehat{\mathbf{A}}$
 - 2. Input $\widehat{\mathbf{A}}$ and \mathbf{X} (node features) to GCN
 - 3. Compute $\widehat{\mathbf{A}}_{DS}$ by applying the Sinkhorn-Knopp algorithm
 - 4. Repeat until maximum number of training epochs
 - Compute the fair gradient $\left(\frac{\partial J}{\partial \mathbf{W}^{(l)}}\right)_{\text{fair}} = \left(\mathbf{H}^{(l-1)}\right)^T \widehat{\mathbf{A}}_{\text{DS}}^T \frac{\partial J}{\partial \mathbf{E}^{(l)}} \text{ using } \widehat{\mathbf{A}}_{\text{DS}}$
 - Update $\mathbf{W}^{(l)}$ by the fair gradient $\left(\frac{\partial J}{\partial \mathbf{W}^{(l)}}\right)_{\mathrm{fair}}$



Doubly Stochastic

RawlsGCN: Effectiveness Results

Observations

- RawlsGCN achieves the smallest bias
- Classification accuracy can be improved
 - Mitigating the bias → higher accuracy for low-degree nodes → higher overall accuracy

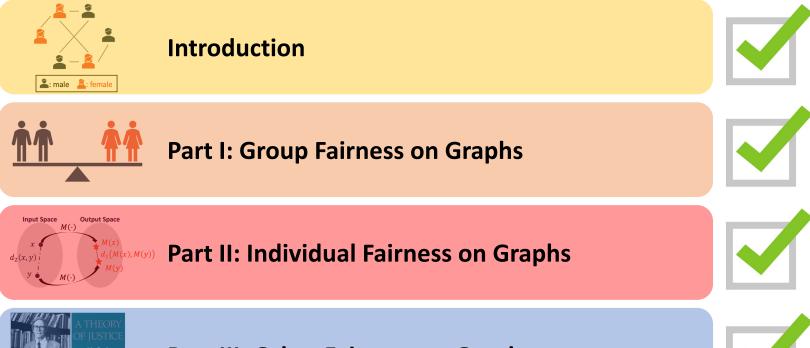
Method	Coautho	r-Physics	Amazon-C	Computers	Amazon-Photo		
1,1001	Acc.	Bias	Acc.	Bias	Acc.	Bias	
GCN	93.96 ± 0.367	0.023 ± 0.001	64.84 ± 0.641	0.353 ± 0.026	79.58 ± 1.507	0.646 ± 0.038	
DEMO-Net	77.50 ± 0.566	0.084 ± 0.010	26.48 ± 3.455	0.456 ± 0.021	39.92 ± 1.242	0.243 ± 0.013	
DSGCN	79.08 ± 1.533	0.262 ± 0.075	27.68 ± 1.663	1.407 ± 0.685	26.76 ± 3.387	0.921 ± 0.805	
Tail-GNN	OOM	OOM	76.24 ± 1.491	1.547 ± 0.670	86.00 ± 2.715	0.471 ± 0.264	
AdvFair	87.44 ± 1.132	0.892 ± 0.502	53.50 ± 5.362	4.395 ± 1.102	75.80 ± 3.563	51.24 ± 39.94	
REDRESS	94.48 ± 0.172	0.019 + 0.001	80.36 ± 0.206	0.455 ± 0.032	89.00 ± 0.369	0.186 ± 0.030	
RawlsGCN-Graph (Ours)	94.06 ± 0.196	0.016 ± 0.000	80.16 ± 0.859	0.121 ± 0.010	88.58 ± 1.116	0.071 ± 0.006	
RawlsGCN-Grad (Ours)	94.18 ± 0.306	0.021 ± 0.002	74.18 ± 2.530	0.195 ± 0.029	83.70 ± 0.672	0.186 ± 0.068	

RawlsGCN: Efficiency Results

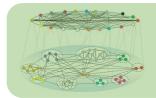
- Observation: RawlsGCN has the best efficiency compared with other baseline methods
 - Same number of parameters and memory usage (in MB) with GCN
 - Much shorter training time (in seconds)

Method	# Param.	Memory	Training Time	
GCN (100 epochs)	48, 264	1, 461	13.335	
GCN (200 epochs)	48, 264	1, 461	28.727	
DEMO-Net	11, 999, 880	1,661	9158.5	
DSGCN	181, 096	2, 431	2714.8	
Tail-GNN	2, 845, 567	2,081	94.058	
AdvFair	89, 280	1, 519	148.11	
REDRESS	48, 264	1, 481	291.69	
RawlsGCN-Graph (Ours)	48, 264	1, 461	11.783	
RAWLSGCN-Grad (Ours)	48, 264	1, 461	12.924	

Roadmap



Part III: Other Fairness on Graphs



Part IV: Future Trends

Fairness on Dynamic Graphs

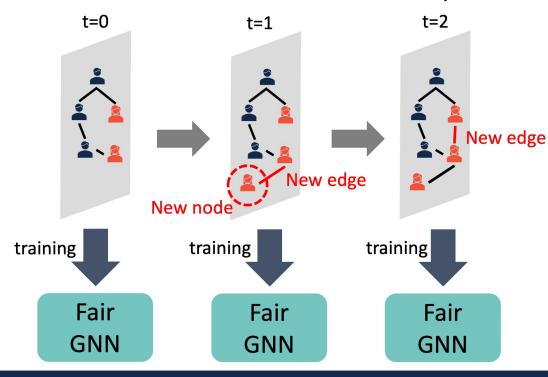
- Motivation: networks are dynamically changing over time
 - New nodes: new accounts on social network platforms (e.g., Facebook, Twitter)
 - New edges: new engagements among people on social networks (e.g., follow, retweet)
- Trivial solution: re-run the fair graph mining algorithm from scratch at each timestamp

Limitations

- Time-consuming to re-train the mining model
- Fail to capture the dynamic fairness-related information

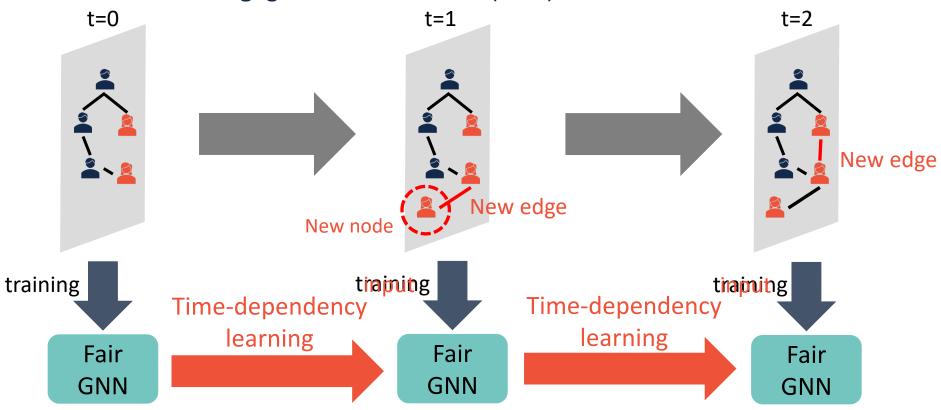
Questions

- How to efficiently update the mining results and ensure the fairness at each timestamp?
- How to characterize the impact of dynamics over the bias measure?



Fairness on Dynamic Graphs

- Possible method: fair graph mining model with time-dependency learning module
 - Efficient update: dynamic tracking module
 - Temporal information learning: gated recurrent unit (GRU)



Benchmark and Evaluation Metrics

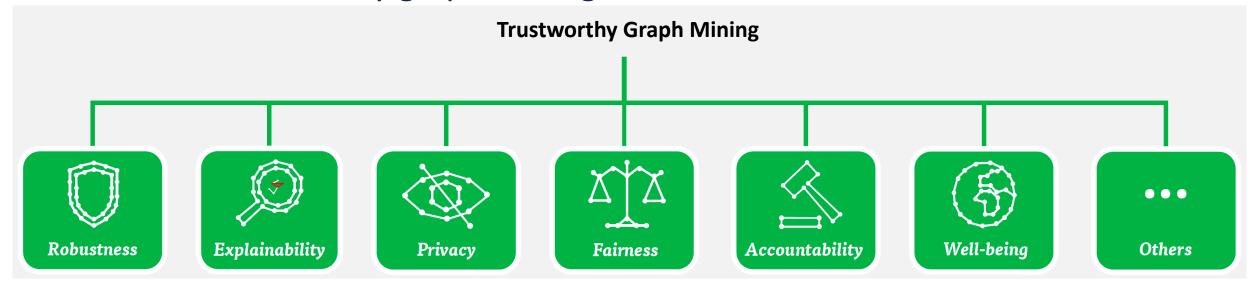
- Motivation: there is no consensus on the experimental settings for fair graph mining
 - Which graph(s) we should use for fair graph mining?
 - What could be the sensitive attribute(s) for each dataset to be used?
 - What should be the evaluation metric for each type of fairness on graphs?
 - How to split the dataset for training, validation and test?

Consequences

- Different settings for different research works
- Hardly fair comparison among debiasing methods
- Call: the community should work together toward
 - A consensus on the experimental settings
 - A benchmark for fair comparison of different methods

Fairness vs. Other Social Aspects

• Overview: trustworthy graph mining



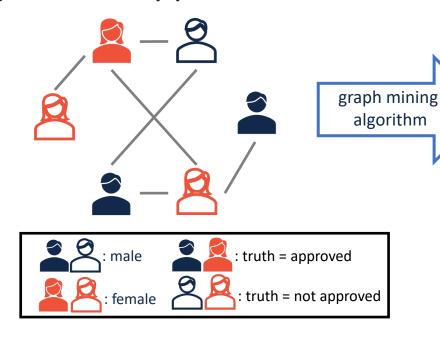
- Motivation: tensions among the social aspects
- Fairness vs. privacy
 - Is fairness related to privacy preservation on graphs?
 - Will preserving privacy help ensuring fairness, or vice versa?

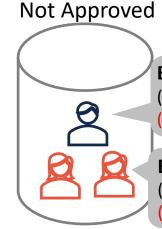
Fairness vs. Explainability

Research questions

- Are the existing debiasing methods transparent?
- If not, can we open the black box of debiasing methods on graphs?

• Example: loan approval





- **Explanation:** (1) Low credit history
- (2) Decision independent to gender

Explanation:

- (1) High historical default rate
- (2) Decision independent to gender

- **Fair:** equal true positive rate
- Transparent: explanation on the usage of sensitive information

^[2] Dong, Y., Wang, S., Ma, J., Liu, N., & Li, J. (2023). Interpreting Unfairness in Graph Neural Networks via Training Node Attribution. AAAI 2023.

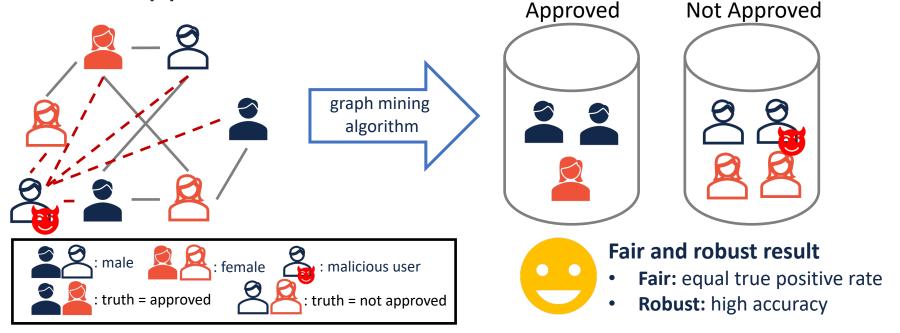
^[1] Dong, Y., Wang, S., Wang, Y., Derr, T., & Li, J. (2022). On Structural Explanation of Bias in Graph Neural Networks. KDD 2022.

Fairness vs. Robustness

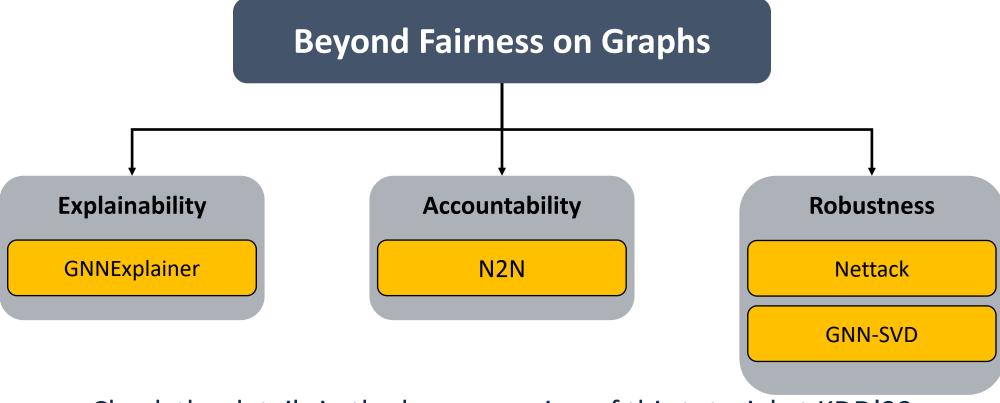
Research questions

- Will existing adversarial attack strategies affect the fairness of mining model?
- Are the existing debiasing methods robust against random noise and adversary?

• Example: loan approval



Related Problems of Fairness



Check the details in the longer version of this tutorial at KDD'22

Algorithmic Fairness on Graphs: Methods and Trends

http://jiank2.web.illinois.edu/tutorial/kdd22/algofair_on_graphs.html

Takeaways

Introduction to algorithmic fairness on graphs

Background, challenges, related problems

Group fairness on graphs

- Classic graph mining: ranking, clustering
- Advanced graph mining: node embedding, graph neural networks

Individual fairness on graphs

Laplacian regularization-based method, ranking-based method

Other fairness on graphs

Counterfactual fairness, degree fairness

Future directions

- Fairness on dynamic graphs
- Benchmark and evaluation metrics for algorithmic fairness on graphs
- Interplay between fairness and other aspects of trustworthiness

Resources

- Datasets: https://github.com/yushundong/Graph-Mining-Fairness-Data
- Paper collection: https://github.com/EdisonLeeeee/Awesome-Fair-Graph-Learning

Surveys

- Dong, Y., Ma, J., Chen, C., & Li, J. (2023). Fairness in Graph Mining: A Survey. TKDE 2023.
- Zhang, W., Weiss, J. C., Zhou, S., & Walsh, T. (2022). Fairness Amidst Non-IID Graph Data: A Literature Review. arXiv preprint arXiv:2202.07170.
- Zhang, H., Wu, B., Yuan, X., Pan, S., Tong, H., & Pei, J. (2022). Trustworthy Graph Neural Networks: Aspects, Methods and Trends. arXiv preprint arXiv:2205.07424.
- Dai, E., Zhao, T., Zhu, H., Xu, J., Guo, Z., Liu, H., ... & Wang, S. (2022). A Comprehensive Survey on Trustworthy Graph Neural Networks: Privacy, Robustness, Fairness, and Explainability. arXiv preprint arXiv:2204.08570.

Related tutorials

- Algorithmic Fairness on Graphs: Methods and Trends
 - http://jiank2.web.illinois.edu/tutorial/kdd22/algofair on graphs.html
- Fairness in Graph Mining: Metrics, Algorithms, and Applications
 - https://yushundong.github.io/icdm_tutorial_2022.pdf
- Fair Graph Mining
 - http://jiank2.web.illinois.edu/tutorial/cikm21/fair graph mining.html
- Fairness in Networks
 - https://algofairness.github.io/kdd-2021-network-fairness-tutorial/

Acknowledgements

- Part of the slides are credited to the following authors
 - (in alphabetic order of last name)
 - Chirag Agarwal (Harvard University)
 - Avishek Joey Bose (McGill University)
 - Yushun Dong (University of Virginia)
 - Matthäus Kleindessner (Amazon)
 - Peizhao Li (Brandeis University)
 - Zemin Liu (National University of Singapore)
 - Jing Ma (University of Virginia)
 - Evaggelia Pitoura (University of Ioannina)
 - Xianfeng Tang (Amazon)
 - Panayiotis Tsaparas (University of Ioannina)
- If you would like to re-use these contents, please contact the original authors.

References

- Tsioutsiouliklis, S., Pitoura, E., Tsaparas, P., Kleftakis, I., Mamoulis, N. (2021). Fairness-aware PageRank. WWW 2021.
- Tsioutsiouliklis, S., Pitoura, E., Semertzidis, K., & Tsaparas, P. (2022). Link Recommendations for PageRank Fairness. WWW 2022.
- Kleindessner, M., Samadi, S., Awasthi, P., & Morgenstern, J. (2019). Guarantees for Spectral Clustering with Fairness Constraints. ICML 2019.
- Bose, A., & Hamilton, W. (2019). Compositional Fairness Constraints for Graph Embeddings. ICML 2019.
- Rahman, T., Surma, B., Backes, M., & Zhang, Y. (2019). Fairwalk: Towards Fair Graph Embedding. IJCAI 2019.
- Dai, E., & Wang, S. (2021). Say No to the Discrimination: Learning Fair Graph Neural Networks with Limited Sensitive Attribute Information. WSDM 2021.

References

- Kang, J., He, J., Maciejewski, R., & Tong, H. (2020). InFoRM: Individual Fairness on Graph Mining. KDD 2020.
- Dong, Y., Kang, J., Tong, H., & Li, J. (2021). Individual Fairness for Graph Neural Networks: A Ranking based Approach. KDD 2021.
- Agarwal, C., Lakkaraju, H., & Zitnik, M. (2021). Towards a Unified Framework for Fair and Stable Graph Representation Learning. UAI 2021.
- Tang, X., Yao, H., Sun, Y., Wang, Y., Tang, J., Aggarwal, C., ... & Wang, S. (2020). Investigating and Mitigating Degree-related Biases in Graph Convolutional Networks. CIKM 2020.
- Kang, J., Zhu, Y., Xia, Y., Luo, J., & Tong, H. (2022). RawlsGCN: Towards Rawlsian Difference Principle on Graph Convolutional Network. WWW 2022.

